
The AMPERE project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 871669

Name – Institution

Activity - Location

AMPERE Final Event Webinar
Michael Pressler — Robert Bosch GmbH

Olivier Constant — Thales
Thomas Vergnaud — Thales

27 June 2023

Enhancing productivity through
model driven engineering

2 27/06/2023

System Model Description and Use-cases

Synthesis Tools & Compilers

Meta PPM
abstraction

Multi-criterion
Optimization

Parallel code
(e.g., OpenMP)

High-level Parallel
Programming Model

Resource Allocation
(i.e., mapping)

AlAlll

+

Runtime +
OS/Hypervisor

Monitoring + dynamic
resource allocation

Profiling

Low-level
Threading Library

Hardware
Abstraction Layer

Model

Platform description

System description
(Domain Specific Modelling Language)

Meta Model
Driven

Abstraction

3 27/06/2023

Benefits of model-driven engineering (MDE)

Improve insight in dynamic system behavior
Systems in development
Systems in field

FPS

DDR
Core
GPU

Identify opportunities
Derive OS configurations
Evaluate mapping of functions, data, and code to
hardware platform
Exploit parallelism of the hardware platform
Prioritization of critical event-chains

Assess design choices & requirements
Systems in acquisition
Systems in planning or development

Goal

4 27/06/2023

System design with Capella: the method
Initially developed & deployed at Thales

Released in open source:

Used in many industrial sectors (aerospace, energy,
transportation…)

5 27/06/2023

Hardware

AMALTHEA – a common system model

Constraints
Period T1 = 2ms
Deadline D1 =
1.5ms
Period T2 = 5ms
Deadline D2 = 5ms

Costs
T1 takes 10μs on
Core0, 20μs on
Core3

Decisions
Decisions

Run T1 on Core0
Run T2 on Core1
Offset of T2 = 1ms

AMALTHEA

System
Model

System Performance Analysis

Optimization

Config Generation
Software

Core 0

Core 1

HW/SW System

.oil.cf
g .h

Platform

6 27/06/2023

• High-level physical architecture
o HW & SW structures
o Data flow
o Coarse-grained deployment / mapping

• Operational & System analyses
• Logical architecture
• Overall traceability for impact analysis

• Detailed physical architecture
o HW characteristics & performance
o Resource consumptions
o Parallelism inc. SW activation, control flow, scheduling
o Constraints on data / timing / parallelism

Bridge
scope

Capella vs. Amalthea concepts and Bridge

• The incremental Bridge allows synchronising the Amalthea
model with the Capella model non-destructively.

• It thus supports consistent concurrent modelling at different
levels of abstraction, e.g., in Agile sprints.

AMPERE
Analyses

7 27/06/2023

APP4MC Ecosystem

Open Source tool

Bosch-internal tool
(specific for product line)
Third party tool

Bosch-internal tool

Supporting
tools

OptimizationSimulation

LLVM

Sourcecode
Analysis

Platform
Vi

su
al

iz
at

io
n

Lo
co

m
o

D
at

a
C

on
si

st
en

cy

ch
ec

k

SCA
AMALTHEA ECU Software Development Tools

M
er

ge
r

Binary (ELF)
AMALTHEA

Va
lid

at
io

ns

AUTOSAR
AMALTHEA

AMALTHEA Model

Ti
m

in
g

Ar
ch

ite
ct

s

IN
C

H
R

O
N

Sy
m

ta
Vi

si
on

PL specific tools

M
ul

tic
or

e
C

he
ck

s

Fl
ux

AM

AL
TH

EA

AMALTHEA Exporter

APP4MC
tools

Ed
ito

r

Pa
rt

iti
on

in
g

…

Trace Tooling

Trace
AMALTHEA

SW sharing

Measures
AMALTHEA

…

OEM

Tier 2
Tr

an
sf

or
m

at
io

n
Fr

am
ew

or
k

Sy
nt

he
tic

 L
oa

d
G

en
er

at
or

8 27/06/2023

Config Generation

Hardware

AMALTHEA – a common system model

Constraints
Period T1 = 2ms
Deadline D1 =
1.5ms
Period T2 = 5ms
Deadline D2 = 5ms

Costs
T1 takes 10μs on
Core0, 20μs on
Core3

Decisions
Decisions

Run T1 on Core0
Run T2 on Core1
Offset of T2 = 1ms

AMALTHEA

System
Model

System Performance Analysis

Optimization

Software

Core 0

Core 1

HW/SW System

.oil.cf
g .h

PlatformExtended Amalthea data model
to support high performance

integration platforms

Support for implementation specializations
• Local Mode Labels

• Possibility to define mutable local
context for a runnable

• Context can be set when runnable is called

C 0

9 27/06/2023

Hardware

AMALTHEA – a common system model

Constraints
Period T1 = 2ms
Deadline D1 =
1.5ms
Period T2 = 5ms
Deadline D2 = 5ms

Costs
T1 takes 10μs on
Core0, 20μs on
Core3

Decisions
Decisions

Run T1 on Core0
Run T2 on Core1
Offset of T2 = 1ms

AMALTHEA

System
Model

System Performance Analysis

Optimization

Config Generation
Software

Core 0

Core 1

HW/SW System

.oil.cf
g .h

PlatformExtended Amalthea data model
to support high performance

integration platforms

Support for Pub/Sub Middlewares
• Support for new data driven task activation schemes
• Extended channel concept for fine-grain modelling of

buffer access
• Read access depending on channel fill condition
• While loops to e.g. loop of an non-empty buffer

Support for implementation specializations
• Local Mode Labels

• Possibility to define mutable local
context for a runnable

• Context can be set when runnable is called

Haaardrdrddddrdrddddddddwawwwwawawawawawawwawawaaawawawawawaaawawawaawawawaawawwaaw rrererereeeeerereeerererrrereererrerreeeeeeeeeereeeerreeee

Sooofttttwawawaaaaawawaaaww rerererererereerrrrrrrrrrrrrrrerrrrr

System Performance Analysis

onfig Generation

Core 0Co

CoCCCCCoCCoCoCCCooooooooCCooCCCCCooooooooCCCCooorerererrererreeeeeerrreeerrrerreeeeeeeeeee 1111111111111111111111CoCCCCCC

oil.cf

h.hhhhh

PlatformEExxxxxxxxxxxxxxxxxtttttttttttttttttttttttteeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnnnndddeeeeeeeeeeeeeeeeeeeeeeeeeeeddd AAmmmmmmmmmmmmmmmaaaaaaaaaaaaaaaaaaaaalllllllllllllllllttttttttthhhhea data model
to support hhighh perfformance

iiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnntttttteeeeeeeeeeeeeegggrrraaaaaaaaaaaaaatttttttiiioooooooooon pppplllaaaattfffoooorrrmmmmsss

edddddddddddd ccccccccccccccccccccccccccccccccccccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhaannneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelllllllllllllllllllll ccooonnncccccccccccccccccccccccccccccceeept for fine-grain modelling of
cceeeeeeeeeeesssssssssssss
ad acccceeeeeeeeeeeeeeessssssssssssssssssssssssssss dddeeepppppppppppppppppppppppppppppeenndddiiing on chhhannelll fffiiillllll coondition
hile loooops ttooooooooooooooooo eeeeeeeeeeeeeeeeeeeeeeeeeeee........gg.... lllllllllllllllllllllllllllllooopp oooooooooooooooooooooofff aaaaaaaaaaaaaaaaaaaaaaaaaaaannn nnnnnnnnnnnnnnnnnnnnnnnnnooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnn--emptyyy bbbuuuffffffeeer

Supppppppportt ffoooooooooooooooooooooooooooooorrr iimmpppppppppppppppppppppppppppppppppppppppllllllllllllllllleemmeeenntttaattiooonn ssppeecciiiiiiiiiiiaaaaaaaaaaaalizatio
• LLocaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaallllllllllllllll MMMooodddee LLLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelllss

10 27/06/202310 27/06/2023

Synthetic Load Generator

11 27/06/2023

Bosch: Synthetic Benchmark Generator (SLG)

for (int repeat = 0 ; repeat < labelAccessStatistics; repeat++){
if(numberOfBytes < 4){

numberOfBytes = 4;
}
int arraysize = sizeof(array)/4;

//printf("number of bytes:%d\n",arraysize);
int leftOverElements=arraysize%10;

int arraySizeWith10Multiples=arraysize-leftOverElements;
int i = 0;
int a = 0;
for (i = 0; i < arraySizeWith10Multiples; i = i + 10) { //ite

ration with 10 reads
a = DummyLabelRead[i];
a = DummyLabelRead[i+1];
a = DummyLabelRead[i+2];
a = DummyLabelRead[i+3];
a = DummyLabelRead[i+4];
a = DummyLabelRead[i+5];
a = DummyLabelRead[i+6];
a = DummyLabelRead[i+7];
a = DummyLabelRead[i+8];
a = DummyLabelRead[i+9];

}

SW characteristics
- Runtime
- Memory accesses
- Data types

Synthetic Load Synthetic Load
Generator

Configuration
model

Generated
output
e.g. multiple
connected
Executables

Amalthea as single input source

.cpp

.hppmake

.
.arxml

int arraySizeWith10Multiples=arraysize-leftOverElements;
int i = 0;
int a = 0;
for (i = 0; i < arraySizeWith10Multiples; i = i + 10) { //ite

ration with 10 reads

TickSnippet

LabelSnippet

Generating Executables which are directly deployable on the ECU

12 27/06/2023

SLG: Software Architecture

Model Transformation Framework
(M2M and M2T based on Xtend, GoogleGuice injection mechanism, Eclipse Extension point mechanism)

AUTOSAR
Adaptive

- Custom Extensions

ROS2/
microRos

- Custom Extensions

Linux
- Custom

Extensions

M2T Plugins based on Amalthea as input
(Contains the default transformer classes and code which is generic for SLG)

Configuration Model
(Model, Editor for SLG attributes, linking of Amalthea model elements to different parameters)

SLG.Commons:
Contains central synthetic code elements
common for all transformers, are open-
sourced

Specific adaptions towards different
middleware's and operation systems

Internal Autosar Adaptive code generation

ROS2, mircoRos, ErikoOS and Linux adapters
are open-sourced

Generic transformation framework which
provides infrastructure for building M2M
transformations.

ErikaOS
- Custom Extensions

OpenMP
- Custom Extensions

FRED
- Custom

Extensions

13 27/06/2023

SLG: Extension for Custom Code
Optional possibility to add
application specific code to the SLG
The user can provide code hooks for
custom code in the model at
runnable or task level to either
override or contribute to the
synthetic code
Paths to external libraries, code
includes, and compiler keywords can
be specified in the configuration
model to enable automatic
generation of the make file

The AMPERE project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement
No 871669

Thank you!

