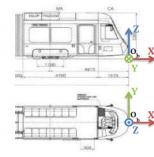


A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation

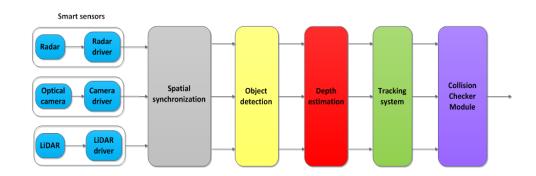
Railway use-case AMPERE Webinar June 27th 2023

Marco Merlini/Massimiliano Polito-GTSI



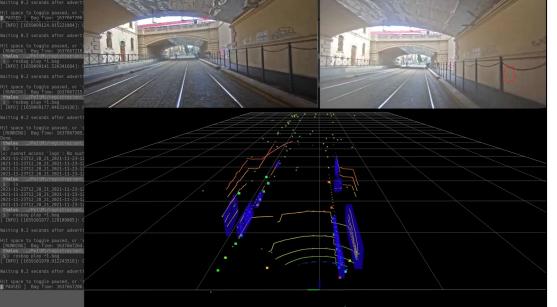
GTSI mission in AMPERE

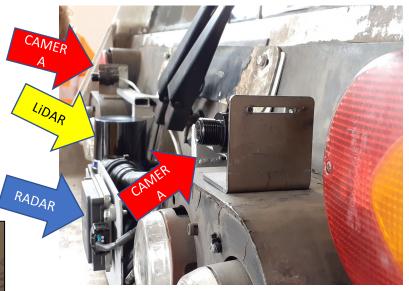
- Providing RAILWAY Use case as application of ODAS (Obstacle Detection and Avoidance System) to the Florence Tramway
- Railway use-case DSML Model: ODAS system model made by Capella and AMALTHEA.
- Capella extension to deal with safety aspects associated to use case
- Cooperation with partners to create a tool chain from Capella to Amalthea by a dedicated bridge.
- Software Kernel from ODAS in collaboration with UNISI: Kalman filter and Observer (later better described in the real-time part).
- ODAS Safety approach and relating constraints to use case to feed activities of partners developing the technological solutions



ODAS

- ODAS (Obstacle Detection and Avoidance System) is a GTSI system that is under finalization and that will become a product for the Tramway market.
- ODAS recently passed the MAIN GATE examination that is the last technologic verification step that GTSI performs to new systems before they are allowed to become products.
- ODAS prototypes (PoC) were installed on three vehicles of the Florence Tramway.

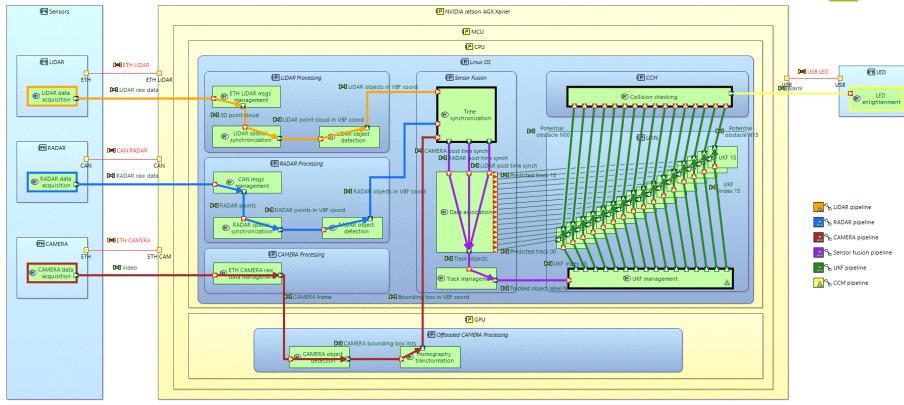



ODAS Installation on prototypes

ODAS relies on sensors mounted on the tram nose:

- Cameras
- LiDAR
- RADAR

Control system based on XAVIER NVIDIA board



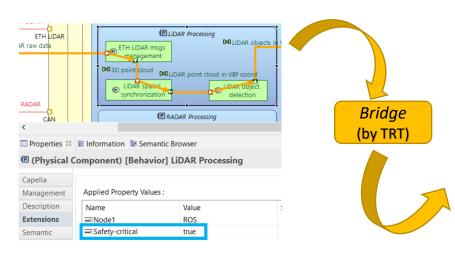
Screen capture of verification tool for sensors' data and their fusion

ODAS Model

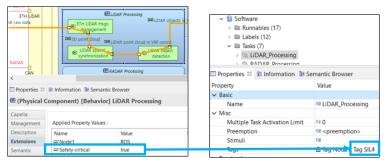
ODAS overview

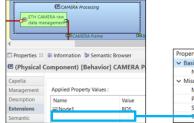
- Data from sensors are collected independently one from each other:
 - 100 ms LiDAR raw data
 - 92 ms RADAR raw data
 - 40 ms for video (25 frames per second)
- Data processed for spatial synchronization(e.g. homography and distortion correction) and time synchronization (data from different sensors)
- Detection of objects
- Data association to establish when different detections from different sensors refer to the same objects
- Tracking of objects. A Kalman filters track each detected object up to a maximum number (now set to 60). In case the number of detected objects exceeds the maximum number, the farthest one is not tracked.
- Collision checker evaluates if the estimated position of each object can lead to a collision, in order to warn the driver.

ODAS and Safety (1/2)



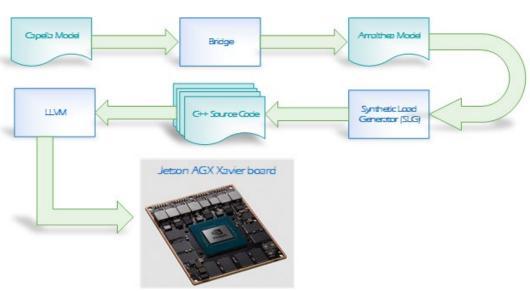
- Use cases have been used as a source of non-functional requirements to test AMPERE ecosystem
- Preliminary Hazard Analysis identified safety requirements on
 - ODAS system
 - AMPERE ecosystem (ex. generated SW must comply to EN50128 standard)
- Modelling of ODAS system safety requirements triggered a modification to the DSML tools at different design levels
 - Inception design: Capella
 - Detailed design: Amalthea


ODAS and Safety (2/2)



- Capella DSLM modification
 - Tag "Safety-critical"

- Amalthea DSLM modification
 - Tag "SILx"



Property	Value
→ Basic	
Name	□ CAMERA_Processing
→ Misc	
Multiple Task Activation Limit	E 0
Preemption	
Stimuli	FIE
iuga	 a Tag Node , Tag SIL0

Use case evaluation

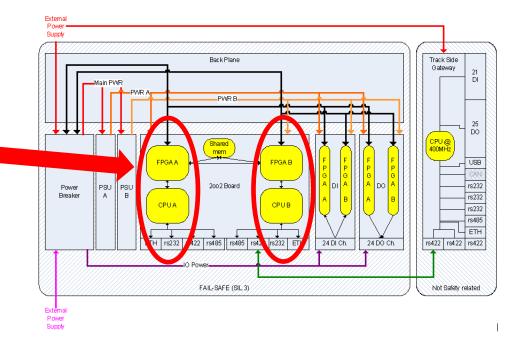
AMPERE ecosystem has been evaluated by applying the toolchain to the railway use case

Thank you

www.ampere-euproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871669

BACKUP SLIDES

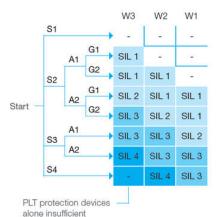

Ongoing work and open topics (4/5)

2002 Architecture

Thales Switch Control Unit

HW Redundancy

Voting mechanism



SIL (Security Integrity Level)

٠.

- SIL is definitely important in RAILWAY domain.
- Technologies which cannot achieve highest SIL level are non applicable to Railway domain

S = Extent of damage

S1 minor injury of a person

S2 serious, irreversible injury of one or more people or death of one person

S3 death of several people

S4 disastrous effects with several dead

A = Likelihood of people being in the area

A1 rarely to slightly more often

A2 frequently to continuously

G = Danger prevention

G1 possible under certain conditions

G2 barely possible

W = Likelihood of occurrence

W1 very small

W2 small

W3 relatively high

13 09/02/2021