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Performance-counter-based power models – Why?

 AMPERE target platforms: modern high-performance systems
 Heterogeneity, parallelism
 Dynamic voltage & frequency scaling (DVFS)

 Analog power meters: slow, no introspection
 Perf. counters: close to the digital hw domain, fast, reliable
 No integration required, cheap-to-use

 Architecture-agnostic, data-driven parameters selection
 Makes it flexible and platform-independent

 Support for DVFS and arbitrary granularity
 With high accuracy and low overhead
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How does all this come together?

 System-level power model = Look-up Table
 One entry for each sub-system, at each frequency
 Each entry = linear power model, driven by counters

 Low overhead – still supporting heterogeneity and DVFS
 Power estimates used to compute energy consumption
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Our holistic model building methodology

1. Workloads selection
 Coverage of all sub-systems
 Broad coverage of each sub-system’s behaviors

2. One-time platform characterization
 Autonomous, statistical selection of the best hardware 

counters to use as model parameters, for a given platform
3. Training and building of the LUT

 Linear power models
 Per sub-system (CPU, GPU, …)
 Per sub-system’s frequency
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Platform characterization

 Statistical data-driven approach
 One time per platform
 No architectural knowledge 

required, flexible
 Procedure

1. Profile (all) counters & power
2. Compute PCC

Person Correlation Coefficient

3. Select best counters
Fine-tune trade-off between number of 
counters (i.e., model overhead) and 
accuracy
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Experimental setup – NVIDIA Jetson AGX Xavier

 8-core 64-bit ARM SoC
 Per-cluster DVFS
 29 nominal frequencies

 115 MHz – 2.3 GHz

 512-core NVIDIA Volta GPU
 14 nominal frequencies

 115 MHz – 1.4 GHz

 2 on-board power monitors (INA3221)
 Analog current sensors
 Useful to build better models Source: https://developer.nvidia.com/blog

https://developer.nvidia.com/blog
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Example case study: CPU platform characterization

 Fixed clock cycle
counter
Always available by default

 Best 3 PMCs
@ each frequency

 Per-cluster DVFS: 
same counter for
each core
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Example case study: CPU model validation

 Power tracked overtime
 Instantaneous avg power error

~4% over all frequencies
 Total energy estimation error

~4% over all frequencies
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Combined system-level model validation

 Instantaneous power avg 
error = ~7.5%

 Total energy estimation 
error = ~1.3%

CPU: 1.2 GHz
GPU: 829 MHz

Instantaneous system power
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Energy modelling in the multi-criteria optimization

Platform 
characterization

best counters 
correlating with power

device-wise,
frequency-wise
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Train & validate 
power models

device-wise,
frequency-wise
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Off-line multi-criteria 
optimization based 
on the TDG:
• Performance
• Heterogeneity
• Time-predictability
• Energy efficiency
• Resiliency

Energy modelling in the multi-criteria optimization

Meta PPM 
abstraction
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generation
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Profiled data
• avg counter 1
• avg counter 2
• …
• task runtime
• …

Optimization loop Estimate task energy & 
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Why energy?

 Green, sustainable computing
 Limited energy budget

 Application-dependent
 AMPERE use cases 

(automotive: battery-powered)
 Optimize energy consumption 

and monitor it
 We are in the post-Dennard-

scaling era
 Energy efficiency is the cost-

effective way to get higher 
performance

Duranton, Marc, et al. "HiPEAC Vision 
2021: high performance embedded 
architecture and compilation." (2021).
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