
D1.5 Meta model-driven abstraction and
model-driven extensions and use-case

enhancements
Version 1.0

Documentation Information

Contract Number 871669

Project Webpage https://www.ampere-euproject.eu/

Contractual Deadline 30.09.2022

Dissemination Level Public (PU)

Nature R

Authors Alexandre Amory, Tommaso Cucinotta(SSSA)

Contributors Sara Royuela (BSC)
Harald Mackamul (BOS)
Massimiliano Polito, Olivier Constant (THALIT)
Tiago Carvalho (ISEP)

Reviewer Miguel Pinho (ISEP)

Keywords AMALTHEA, CAPELLA, meta-model, automotive/railway use-cases

AMPERE project has received funding from the European Union’s Horizon 2020
research and innovation programme under the agreement No 871669.

Ref. Ares(2022)6838850 - 04/10/2022

https://www.ampere-euproject.eu/

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Change Log

Version Description Change

V0.1 Initial version with the original deliverable description.

V0.2 Initial description of the augmentations for performance and heterogeneity.

V0.3 Extensions in the AMALTHEA DSML.

V0.4 Final description of the augmentations for performance and heterogeneity.

V0.5 Complete draft. 1st SSSA review.

V1.0 Complete document, after ISEP review.

ii

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Table of Contents

1 Executive Summary . 1

2 Introduction . 2

3 DSML extensions . 3
3.1 AMALTHEA Extensions for middleware communication and execution behaviour 3

3.1.1 Loops . 3
3.1.2 Conditions on channel fill level . 3
3.1.3 Example: Loop over Channel inputs . 4

3.2 AMALTHEA Extensions for parallelism and heterogeneity . 5
3.2.1 Parallelism and specializations . 5
3.2.2 New components in AMALTHEA . 5
3.2.3 Example: Propagation of specializations . 7

3.3 AMALTHEA Extensions for timing metrics . 7
3.4 AMALTHEA Extensions for power-aware hardware capabilities 9
3.5 CAPELLA Extensions for safety . 11

3.5.1 Safety Functions and SIL levels . 11
3.5.2 DSMLs extensions . 12

4 Use-Cases . 15
4.1 Automotive Use-Case . 15

4.1.1 Communication between Applications . 16
4.1.2 Requirements . 16
4.1.3 Specializations . 17

4.2 Railway Use-Case . 17
4.3 Use-Case Evaluation . 18

4.3.1 Automotive Use-case with Xilinx Ultrascale+ . 18
4.3.2 Automotive Use-case with NVIDIA Jetson AGX . 19
4.3.3 Railway Use-Case with NVIDIA Jetson AGX . 20

5 Conclusions . 21

6 Acronyms and Abbreviations . 22

7 References . 23

iii

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

1 Executive Summary
This document constitutes Deliverable D1.5. Meta model-driven abstraction and model-driven extensions and
use case enhancements, built upon D1.3 and several contributions from the other WPs. D1.5 reports on with
activities carried out in WP1 System Model Description and Use-cases, targeting milestone MS3, and due orig-
inally on project month 27, extended to month 33 as agreed with the EC.
This deliverable presents the final release of the meta model-driven abstractions upon which multi-criteria
optimization is being applied, and a description of the proposed DSML extensions. These include AMALTHEA/-
Capella extensions for middleware communication (ROS) and execution behavior, for modeling runnable spe-
cializations, for capturing performance metrics, for modeling heterogeneouos and DVFS-enabled platforms,
and for tagging modeling elements with safety requirements. It also refines the description of the Automo-
tive and Railway use-cases provided in previous WP1 deliverables, detailing their enhancements based on the
presented DSML extensions, and their resulting benefits from the toolchain under development in AMPERE.

1

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

2 Introduction
This deliverable provides results from the activities in the AMPERE Task 1.4: Meta model-driven abstraction
and model-driven extensions. Task 1.4 (m7:m33) contributes to both D1.3 [1] and D1.5 (this document), and
it designs and develops the meta model-driven abstractions incorporating the key non-functional semantics
features from the AMALTHEA/Capella Domain-Specific Modeling Languages (DSMLs). These features enable
automated model transformations that enable: multi-criteria optimization, evaluation of the correctness with
respect to non-functional constraints, automatic generation of parallel code skeletons complyingwithOpenMP,
the underlying parallel programming model of choice/reference within the AMPERE project, and all of these
with the ability to exploit the acceleration capabilities of parallel heterogeneous architectures. The exten-
sions presented below capture constraints related to end-to-end timeliness of parallel applications, energy
constraints, fault tolerance and safety/security attributes. This task also investigates extensions needed for
the integration of the timing models when deploying on heterogeneous platforms with such components as
CPUs with heterogeneous capabilities (e.g., Arm big.LITTLE or DynamIQ), General-Purpose GPUs (GP-GPU),
and FPGA acceleration.
This deliverable provides the following contents, where we also link the provided software components to
the requirements defined in the traceability matrix from the amended version of D1.1 [2] (all the presented
components dealing with AMALTHEA address implicitly requirements SYS-PCC-REQ-111 and SYS-PCC-REQ-112):

• Chapter 3 concentrates the final DSML extensions for both AMALTHEA and Capella. This chapter is sub-
divided by extension categories, namely:

◦ Section 3.1 describes themiddleware communication extensions to support publish/subscribe com-
munication, used by ROS, and execution behavior extension to model conditional and loop con-
structs in the AMALTHEA Runnables (addressing requirements SYS-ODAS-REQ-106 and SYS-ODAS-
REQ-114);

◦ Section 3.2 presents the extensionswhich enablemodeling runnable specializations, a new concept
that allows runnable target different types of processing units, such as multicore, GPU, or FPGA;

◦ Section 3.3 describes extensions to capture performance metrics out of a profiling campaign (ad-
dressing requirements SYS-PCC-REQ-101, SYS-PCC-REQ-103 and SYS-ODAS-REQ-112);

◦ Section 3.4 describes AMALTHEA hardwaremodel extension to represent hardware platforms with
DVFS capabilities, like the platforms supported by the AMPERE project (addressing requirements
SYS-PCC-REQ-105, SYS-ODAS-REQ-116 and SYS-ODAS-REQ-115);

◦ Section 3.5 presents a Capella extension to capture runnable/task safety requirements and trans-
late these definitions into an AMALTHEA model (aka, Capella/AMALTHEA bridge).

• Section 4.1 presents model extensions regarding publish-subscribe middleware, and useful for example,
in the automotive use-case; these address also specifically messaging and component-based require-
ments in SYS-PCC-REQ-111, but also those in SYS-ODAS-REQ-106, SYS-ODAS-REQ-107 and SYS-ODAS-REQ-
114.

• Section 4.2 shows the model extensions for the railway use-case; these modeling elements are key in
specifying system characteristics that are needed to address requirements SYS-ODAS-REQ-*;

• Finally, Section 4.3 presents the plan to apply the use-cases into the AMPERE target platforms.

2

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

3 DSML extensions

This section describes the model extensions introduced in the AMALTHEA and CAPELLA DSML to support the
AMPERE use-cases.

3.1 AMALTHEA Extensions for middleware communication and
execution behaviour

In order to specify the execution semantics of current middleware architectures the new elementsWhileLoop
and ChannelFillCondition were introduced in the latest releases of APP4MC. It is now possible to model a
control flow path based on data available in a channel. For example: take one element as long the queue is
not empty.

3.1.1 Loops

The new element WhileLoop can be used in the activity description of tasks, interrupt service routines and
runnables (inherited from ActivityGraphItem). It can also contain (nested) activities in the loop body (inherited
from IActivityGraphItemContainer).

• Proposal: Deliverable 1.3 Section 7.1.1

• Release: Eclipse APP4MC 1.2.0 (Jul 2021)

Figure 1: New while loop.

3.1.2 Conditions on channel fill level

Amalthea conditions are structured in a boolean disjunctive normal form (DNF) with an OR-condition on top
level andAND-conditions on the next level. This part of themodelwas generalized to allowall kind of conditions
instead of the former mode conditions. The new element ChannelFillCondition allows to specify conditions on
the number of elements in a channel.

• Proposal: Deliverable 1.3 Section 7.1.1 / 7.1.2

• Release: Eclipse APP4MC 2.0.0 (Nov 2021), 2.1.0 (Apr 2022)

3

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 2: Generalized and extended conditions.

3.1.3 Example: Loop over Channel inputs

The example shows how inputs from a queue can be processed in a while loop. The loop condition checks if
at least one element is available in the channel. The loop body contains a channel receive operation that is
specified as FIFO_Take with number of elements= 1.

Figure 3: Example: Take from input queue as long as elements are available.

The semantics to handle channel fill conditions and loops is necessary for complex data handling between
applications. For example, an application needs the n data points of a sensor data to start calculation. These
modeling extensions allows the designer to specify conditions when and how to access channels. The task
could be activated, when the channel reaches a certain fill level, a callback function can loop of the contents
of a channel to take all data points and execute a functionality until it is empty. These extensions allow us to
model the execution semenatics of modern pub/sub communication schemes.

4

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

3.2 AMALTHEA Extensions for parallelism and heterogeneity

This section describes the features introduced in theAMALTHEADSML to expose parallelismandheterogeneity.
The mechanisms to transform these new features into OpenMP code to effectively exploit performance are
described in D2.3 [3].

3.2.1 Parallelism and specializations
D2.2 [4] proposed exposing parallelism in AMALTHEA at three different levels:

1. among tasks, to define coarse-grained parallelism handled by the operating system (OS) scheduler;
2. among runnables, to define a fine-grained parallelism handled by the parallel programming model run-

time, i.e., OpenMP; and
3. inside runnables, exploiting an even finer-grained parallelism handled by a parallel programming model

(not necessarily the same) in either the host or a dedicated accelerator (e.g., GPU or FPGA).
The former is already supported in AMALTHEA, and the latter is transparent to the AMALTHEA model. This
section describes the second option, as parallelism among runnables is the key to bridge the gap between the
model-driven engineering (MDE) techniques used for the development of the complex cyber-physical systems
(CPS) targeted in the project, and the parallel programming models supported by the underlying parallel and
heterogeneous processor architectures.
The preliminary support for parallelism presented in D2.2 [4] was based on two new custom properties that,
added to a runnable, expose its parallel nature. These properties are:

• host parallelism, to describe a potentially concurrent unit of work to be in the host system, and
• accelerator parallelism, to describe a potentially concurrent unit of work to be executed in an accelerator
device (e.g., GPUs or FPGA).

The goal of AMPERE is to develop an integrated ecosystem for low-energy and highly parallel and heteroge-
neous computing architectures. Consequently, the mechanism used to expose parallelism in the AMALTHEA
model shall offer an extensible and modular approach to target all platforms considered in the project, includ-
ing shared-memory (host parallelism) and heterogeneous systems (accelerator parallelism). For this reason,
we modified the original approach of exposing fine-grained parallelism in AMALTHEA to also exploit the con-
cept of specialization, i.e., a specific implementation to be executed under certain conditions. The main idea
is that a runnable can be defined by a number of specializations (e.g., one for the host and other for FPGA),
which are also concurrent units of work defined to be executed in the host or a particular accelerator device
depending on the conditions assigned to each specialization.

3.2.2 New components in AMALTHEA
The execution path of a runnable/task can nowdepend on a local execution context. The context is represented
by local mode labels that can be modified in their activity graph. Context information can also be propagated
in the call tree (set in the context of a runnable call).

3.2.2.1 Execution context / Local Mode Labels

Execution Context
• is defined in the scope of an executable (task, ISR, runnable)
• values are represented by local mode labels
• values can be . . .

5

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

◦ set/modified in an activity graph

◦ passed when calling a runnable

Local Mode Labels

• can save a local copy of a global state at a specific point in time (e.g., when the function is called)

• can be modified (incremented, decremented, . . .)

• are used in conditions (switches, loops) in an activity graph

• can be set in a runnable call (“execution context”)

• have the same attributes as global mode labels

Figure 4: New execution context.

3.2.2.2 Setting an execution context

Figure 5: Setting an execution context.

6

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

3.2.2.3 Execution/implementation specializations

Figure 6: New local mode label conditions.

3.2.3 Example: Propagation of specializations
In order to address parallelismand specializations in a portable andproductivemanner, anAMALTHEA software
model can be then increased as follows:

1. Introduce a new mode called specializations with the possible values host_seq, host_omp, device_omp
and device_cuda, where host_seq and host_ompwill definework to be executed in the host (sequentially
or potentially in parallel, respectively), and device_omp and device_cudawill definework to be executed
in aGPU (viaOpenMPor CUDA, respectively). The extensions for FPGA support, described inD1.3, are not
yet integratedwith the specializations presented in this deliverable. Weenvision to include adevice_fpga
mode to integrate FPGAs in the common mechanism to support parallelism and heterogeneity.

2. Define a local labelwithmode specializations in each runnable containing parallel and/or heterogeneous
behaviour. Then, introduce in the activity graph a switch indicating the available implementations and
the conditions (based on the local label) to be fulfilled for executing each version.

3. Define the context for each parallel/heterogeneous runnable call in the tasks. This context uses the local
label corresponding to each runnable.

As an illustration, Figure 7 depicts the AMALTHEAmodel of the DAPHNE [5] Points2Image use case1 augmented
with the new extensions for parallelism and heterogeneity. This application runs six times a pipeline of func-
tionalities (runnables) consisting in (1) read_case to read a specific input image, (2) preprocess to process the
input, (3) computation to perform transformations in the image, and (4) postprocess to store the image. The
model has been tuned to alternate the execution of the pipeline in the host (task pointcloud2_to_image_host)
and the accelerator (task pointcloud2_to_image_device), where the host version is executed periodically, and
the device version is triggered when the host version finishes. The figure highlights in yellow how the pipeline
to run the host version of the preprocess runnable is defined.

3.3 AMALTHEA Extensions for timing metrics
The AMPERE eco-system includes tools able to extract runtime information on program executions or by simu-
lation (e.g. Extrae) and tools that analyse those results into useful metrics. The timing analysis tool, described
in deliverable D3.3 [6], extracts metrics from the results provided by Extrae. Once performance traces and
estimations have been gathered from these profiling tools, on a given hardware, it is important to feedback
that information to the AMALTHEA models. As the notion of timing properties in AMALTHEA is narrow, we
have defined an approach such that this additional data is in fact additional information within the model, and
does not compromise or change the behavior of the model. For instance, changing the Ticks specified in the
ActivityList of a Runnable would change the behavior of the latter.

1DAPHNE is an automotive benchmark suite for parallel programming models, which implements automotive workloads using dif-
ferent state-of-the-art programming models for heterogeneous platforms, i.e., OpenMP, CUDA and OpenCL.

7

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 7: Exposing inter-runnable parallelism and code specializations in the DAPHNE Points2Image use-case.

Figure 8 shows an example model extended with performance traces. To add the auxiliary data, custom
Entities with custom Properties are used. By using custom elements, we do not change the designed
behavior of the AMALTHEAmodel and still allow the addition of new features in the subsequent modeling pro-
cesses (e.g. code generation) able to retrieve and analyze these values. Since results may vary depending on
the executing environment, the extracted data is organized by hardware (a Custom Entity, as depicted in
the first level of Figure 8). Each Custom Entity contains a set of custom properties, including a description
of the hardware, and a map for each timing metrics organized by Runnable (the second level in Figure 8).
The map contains the description of the target runnable and the timing analysis metrics, here specified per
performance counter (level 3 in Figure 8).
Each Runnable has a set of performance counters and execution time, which are defined by the following
information:

• Metric: the name of the metric (e.g. Time or number of instructions);
• Entity: the target Runnable;
• max: the maximum value from all the existing executions;
• min: the minimum value from all the existing executions;
• avg: the average value of the metric;
• stddev: the standard deviation;
• samples: the total number of samples;
• values: a complete list of raw values.

In the case of Figure 8, four performance metrics are shown, besides the execution time of the Runnable. For
instance, the example shows the number of instructions executed and the number of L1 cache misses.
Note that the annotation model is very flexible and might contain any metric relevant to the subsequent de-

8

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 8: Example of an annotated Runnable in an AMALTHEA model. The annotation was based on custom
entities and custom properties.

velopment processes (e.g. model analysis and code generation). Although the approach is not tangled to a
specific code generator, the generator could use the data in the model to customize the generated code for a
given Runnable. Another use for this information is to perform scheduling decisions properly.

3.4 AMALTHEA Extensions for power-aware hardware
capabilities

One of the key information provided in an Amalthea model for real-time applications is the specification of
(worst-case estimates of) execution times of runnables and tasks. This is done by specifying in the software
model the amount of clock cycles (Ticks) required for execution of each Runnable (in the worst-case). This
number is meant to be multiplied by the frequency of the CPU where the Runnable will run, in order to obtain
the worst-case execution time (WCET) that can be used for real-time analysis purposes. The CPU frequency
can be specified in the hardware model, as the default frequency of the power domain associated with the
CPU the Runnable is mapped onto (as due to it belonging to a specific Task). An example of the above two bits
of information is shown in Figure 9, showing an excerpt of the Amalthea model for the ODAS use-case.
This allows for specifying computational requirements in a frequency-independent fashion. However, the hard-
ware platforms investigated in AMPERE are characterized by a plurality of power operational modes (often
called Operating Performance Points – or OPPs)2. The typical situation is to have an embedded multi-core
hardware platform with power-saving features. Such a platform is characterized typically by one or more CPU
islands, each of which can be configured to switch among a discrete number of OPPs. Each OPP corresponds
to a different frequency of the CPU, and it results in lower instantaneous power consumption of the CPU both
when continuously processing, and also when idle. Lower OPPs are also characterized by a lower voltage in
powering the cores associated to the clock domain. Therefore, when switching to a lower-frequency power
mode, what happens is that a Runnable execution time expands, while at the same time the power consump-
tion of the CPU lowers.
In order to provide the designerwith the ability to catch, albeit at a high level and through possibly approximate
figures, this additional dimension of how execution times and power/energy consumption of the platform
change, depending on the configuration options of the underlying platform, we propose extensions to the
2More information is available at: https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/
opp.ttx.

9

https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.ttx
https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.ttx

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 9: WCET modeling in simple AMALTHEA models.

AMALTHEA hardware specification model, making use of Custom Properties. Shortly, we can specify a list of
configuration pairs or triplets in terms of frequency of execution, and associated busy power consumption, as
well as an optional idle power consumption. This is done by adding to a power Domain apowerModes custom
property, being a list of map elements, where each map can specify up to 3 key/value pairs: a frequency, a
busyPower, and an idlePower (this can be left unspecified and assumed negligible, if preferred).
An example design with this ability is shown in Figure 10, where a simple model excerpt is shown where the
MainClk power Domain specification attached to the CPU (ECU at the bottom of the model), is characterized
by 3 power modes (or OPPs), with different values for the CPU frequency, and associated busy and idle power
consumption figures (the numbers in this figure are provided as an example, they do not correspond to any
real platform).
The just introduced powerModes custom property can also be used to characterize different possible fre-
quencies of operation for GP-GPU (or even FPGA) accelerators.
Example hardware designs whose power-saving abilities can be characterized with the above introduced
Amalthea extensions, include the two platforms chosen as reference target boards for AMPERE:

• the Xilinx UltraScale+ ZCU102 platform, where there is a quad-core island with Arm Cortex A53 cores, a
dual-core island with Arm Cortex R5F cores, and a FPGA fabric;

• the NVIDIA Jetson AGX platform, with an island with 8 CPU cores and a GP-GPU.
But this allows for modeling also generic embedded platforms making use of the Arm big.LITTLE (or DynamIQ)
architecture, a very common choice of CPUs for embeddedmobile devices, typicallymanufactured in octa-core
configurations, with either 4+4 or 2+6 big and LITTLE CPU islands.
Examples of real island frequencies, as well as busy and idle power consumptions associated to each possible
frequency of operations for a number of boards, including the ZCU102 mentioned above, can be found in [7]
and the AMPERE deliverable D3.2 [8], Section 4.1.2. The gathered timing rescaling and power consumption

10

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 10: Modeling of different power modes in a simple AMALTHEA model.

figures have also been made available in the open-source PARTSim power-aware real-time system simulator3
developed at SSSA for simulation-based verification of the correct timing and schedulability of a set of parallel
real-time DAGs deployed on heterogeneous platforms, as needed in AMPERE.

3.5 CAPELLA Extensions for safety

Safety constraints imposed by the compliance to safety-related standards and best practices, which are typical
of both automotive and railway scenarios, have been considered in the AMPERE project as a basis for a deep
analysis of the impact of non-functional constraints on AMPERE ecosystem.

3.5.1 Safety Functions and SIL levels
Before going into details in the DSML extensions required by THALIT use-case, some informationmust be given
about the concepts of “Safety Function” and “Safety Integrity Level” (SIL). Several industrial processes present
an inherent risk of accidents that could lead to injuries to people or damages to the environment. To mitigate
the impact and the likelihood of these accidents, one or more Safety-Related Systems can be put in place.
These systems aim to monitor hazardous processes and intervene whenever something happens that could
determine a hazardous event (an example of a Safety-Related System is the systemmonitoring and controlling
the temperature in a nuclear plant). Functions implemented by Safety-Related Systems to monitor and control
hazardous processes are called Safety Functions.
However, since Safety-Related Systems are designed and implemented by human beings, Safety Functions can
3More information at: https://github.com/gabrieleara/PARTSim.

11

https://github.com/gabrieleara/PARTSim

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

also fail. The level of confidence we can have in a given Safety Function is called Safety Integrity Level (SIL).
SIL ranges from SIL0 to SIL4, the higher the SIL level the safest the referenced Safety Function. By extension,
the SIL is also a measure of the confidence level we can have in Safety-Related Systems (as they implement SIL
Safety Functions). Rules Safety-Related Systems must adhere to reach a given SIL are defined in international
standards (such as EN50126 and EN501284). Deliverable D1.4 [9] containsmore information about international
safety standards.
The probability of failure in a SIL system is expressed through the Tolerable Hazard Rate (THR) which is mea-
sured in failures per hour. The relation between SIL values and THR is shown in Figure 11.

Figure 11: The relation between SIL and Tolerable Hazard rate (THR).

3.5.2 DSMLs extensions
A Preliminary Hazard Analysis has been performed on ODAS systems and two sets of safety constraints have
been found. In this deliverable, we focus on one of them, i.e. the safety constraints directly impacting the AM-
PERE ecosystem. Safety requirements belonging to this set of constraints are reported below (see deliverable
D1.4 [9] for more details):

• [SYS-ODAS-REQ-200]: AMPERE items implementing safety-critical aspects must be managed (e.g., de-
signed, implemented, tested, etc.) according to EN50126.

• [SYS-ODAS-REQ-201]: Code generation tools must consider EN50128 constraints when generating code
for safety-related design items.

• [SYS-ODAS-REQ-204]: A design item attribute “safety-related” must be available to designers to identify
design items involved in implementing safety functions (safety related design items).

As explained above, all these requirements have in common is that they impact on the AMPERE ecosystem
as a whole, more than on the particular use-case we are analysing. This is why this set of requirements has
been privileged in this deliverable analysis. This set of requirements highlights a weak side of the selected
DSML tools (Capella and Amalthea). Namely, these tools don’t have a specific way of addressing the design of
Safety-Related Systems (which ODAS actually is, for many aspects).
To overcome this weakness, an analysis has been made to find a way to give a designer the possibility of
managing safety requirements from the start of the design phase and throughout all project life cycle. At the
Capella level, the problem was about how to give an engineer the possibility to specify that a design item
was involved in implementing a safety function. To address this problem, a tag has been introduced in the
Capella model to allow the designer to mark, right from the beginning of the design phase, modules involved
in implementing safety functions. This tag has been labeled “Safety-critical” and can be assigned two values,
“true” and “false” (see Figure 12).

4Available at https://standards.globalspec.com/std/10262901/EN%2050126-1.

12

https://standards.globalspec.com/std/10262901/EN%2050126-1

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 12: The Safety-critical tag in Capella.

Another DSML extension involved the Amalthea tool. In this case, the problem was how to propagate to the
Amalthea model the information about a Capella safety-critical design item (i.e. a Capella design item having
been labeled with a “Safety-critical” tag set to “true”). Being the Amalthea model automatically generated by
the Bridge tool (developed by TRT), this Amalthea extension also triggered a modification to the Bridge tool
that had to be extended to propagate the Capella “Safety-critical” information into the Amalthea model. The
extension implemented in the Bridge adds a tag to the “Tags” property of an automatically generated Amalthea
item according to the following rules:

• if the Amalthea item is derived from a Capella item labeled “Safety-critical” the tag “Tag SIL4” is added
by default;

• if the Amalthea item is derived from a Capella item not labeled “Safety-critical” (the default in Capella)
the tag “Tag SIL0” is added.

Figure 13 shows how Amalthea design items are assigned a SIL level according to the Safety-critical status of
their ancestors in Capella.
Tags added by the Bridge to the Amalthea model must be considered as a kind of placeholder. They are only
used as a reminder to the designer that a given item is “safety-critical” so that this item requirement can be
further managed at the Amalthea level. The designer is free to change the SIL4 tag whenever he/she thinks
it’s not the right SIL level to be used and add another one in the range SIL1 to SIL3.
Thismethodological principle is supported by the Bridge. This is required as the Bridge is not a simple translator
from Capella to Amalthea but also a model synchronizer. Once an Amalthea model has been generated, it is
free to evolve in parallel to the Capella model in order to, in particular, be completed by hand on detailed
execution aspects prior to code generation. If the two models diverge on their “common part”, the Bridge is
able to detect the discrepancies and perform a reconciliation by updating the Amalthea model if and where
confirmed.
Thus, a change of SIL level between 1 and 4 must not be considered as a discrepancy, while a change from 0
to 1-4 or the opposite is a significant one. The Bridge can be configured to tolerate or not these “acceptable
changes of SIL level” (Figure 14). More information about the integration of the Bridge within the AMPERE
ecosystem can be found in D6.4.
To have the AMPERE ecosystem fully compliant with safety standards, some extensions should also be consid-

13

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 13: SIL tags in Amalthea.

Figure 14: Configuring the Bridge to tolerate (filter out) acceptable SIL changes

ered for both the SLG tool (a code generating tool developed by BOSCH) and the algorithm allocating software
modules to hardware components (CPU, GPU, FPGA, etc.). The first should be able to generate code compliant
with safety standard EN50128. The latter should be able to manage hardware to software allocation consid-
ering that a SILx software module can only be executed on a hardware platform that can satisfy the same
SIL requirements. However, these extensions haven’t been considered (not falling in the “DSML extensions”
category) and have been left for future analysis.

14

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

4 Use-Cases
This chapter describes updates for both AMPERE use-cases.

4.1 Automotive Use-Case

This chapter details the use-case description and explain how we will demonstrate the benefits of methods
and technologies developed in AMPERE. The selected Automotive Use-Case is the intelligent Predictive Cruise
Control that consists of fourmajor components, the Powertrain Control (PT), the Adaptive Cruise Control (ACC),
a Traffic Sign Recognition (TSR) and the actual Predictive Cruise Control (PCC). They are connected as depicted
in Figure 15. The model can be downloaded in the AMPERE repository [10].

Figure 15: Automotive Use-Case

The power train / engine control management (ECM) is publicly available and described in detail in [11]. The
TSR application consists of three main tasks. The first task takes the image provided by the camera and pre-
processes the input. The second task identifies traffic sign shapes in the picture and sends these parts of the
image to the classification. The classification task is finally identifying the traffic sign and send the result to the
dashboard. The classification can be instantiated multiple times and executed in parallel. The TSR is illustrated
in Figure 16. In the use-case we define a static upper bound of classification tasks and we assume they execute
in every execution. The preprocessing is triggered periodically every 33ms, around 30 frames per second. The
subsequent tasks are triggered by an inter process trigger from their predecessor. The complete TSR model
consists of 10 runnables and 40 labels.

Figure 16: Automotive Use-Case - TSR

The ACC in Figure 17 consists of four main tasks, one for preprocessing the data from the radar system, the
perception task to identify objects and correlate them to objects from previous data. The situation analy-
sis predicts the movement of objects and the driver assistant (DA) function behavior to calculate the torque
demand to the ECM. The complete ACC model consists of 100 runnables and 450 labels.
The main PCC functionality is depicted in Figure 18. It consists of two main tasks. The prediction calculates the
best driving strategy using data from the navigation system, the current speed limit from the TSR and the user

15

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 17: Automotive Use-Case - ACC

speed set point. The trajectory optimizer calculates the speed value for the ACC and the operation strategy for
the ECM. The complete PCC model component consists of 120 runnables and 400 labels.

Figure 18: Automotive Use-Case - PCC

4.1.1 Communication between Applications

In this use-case the communication within an application is modeled with labels while the data exchange be-
tween applications is done via channels. The communication is handled via ROS2/mircoROS as explained in
Deliverable D1.4 [9], Section 3.1.2.. To bridge the world between the classic AUTOSAR ECM and the other com-
ponents in the system we introduce a data broker task. Figure 19 shows the data broker from the ECM. The
task is reactive to events that indicate the arrival of a new data point at the channels for the ECM. The runnable
then copies the data from the channels to the labels within the ECM for a direct access. The ECM task uses
microROS as communication infrastructure as it can be seen in the lower part of the screenshot that displays
the Tags (and other attributes of the selected object).

4.1.2 Requirements

The use-case provides several constraints and requirements that need to be fulfilled as presented in Figure 20.
It includes for example response time constraints for real-time tasks and cause-effect chains that impose timing
requirements for e.g. the data flow from a sensor to an actuator. Runnable separation constraints are used to
specify safety related mapping constraints as described in Deliverable 1.4 [9] in Section 2.2.
To specify the safety level of components we use special Tags in the model. We tag runnables, that need
to fulfill certain requirements, with a safety level. Parts of the ECM runnable, mostly the runnables in the
10ms Task, are ASIL-B1. They need to be executed on certified hardware. The ACC also has ASIL-B parts. Due to
safety decomposition described in Deliverables D1.2 [12] and D1.4 [9] we can implement two diverse algorithms
that fulfill the same functionality. The AMPERE tool chain will respect the constraints that are represented by
runnable-separation-constraints in the model. A modeling example from the ACC was already presented in
Deliverable 1.4 [9].

1Defined at https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en.

16

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Figure 19: Automotive Use-Case - ROS Data Broker

Figure 20: Automotive Use-Case - Constraints and Requirements

4.1.3 Specializations
The automotive use-case provides specializations for runnables to exploit the computational power of the
accelerators of the heterogeneous platforms. In the use-case the ACC pre-processing and perception contains
specializations, that are capable of being offloaded to the FPGA as an alternative to a CPU execution. The
TSR applications allows the classification and image pre-processing to be executed on the GPU. This leads
to different timing and energy consumption and gives the multi-criteria tool chain options to optimize and
improve the system performance and energy consumption. The mechanisms to describe specializations are
described in Section 3.2.

4.2 Railway Use-Case
THALIT main contribution to the AMPERE project is the definition of a use-case taken from a real-world railway
scenario. The goal of this use-case is to stress the AMPERE model by injecting non-functional constraints from
a real-world system.

17

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

The use-case consists of a system to detect and avoid railway obstacles that could be considerd a hazard to the
trainmovement (Obstacle Detection and Avoidance System, ODAS). The ODAS consists of sensors (LIDAR, cam-
era and RADAR), a data fusion software module used to merge information from all these sources, a tracking
module to follow the trajectory of potential obstacles, and a collision checker module to activate a warning in
case of a proven obstacle (see Figure 21). The tracking is done by unscented Kalmann filters on mutiple objects
at the same time so the filters are executed in parallel. Once transformed into an Amalthea model, the ODAS
model consists of 17 runnables and 21 labels.

Figure 21: ODAS System architecture

Safety requirements. As explained in Section 3.5, the safety related functions canbe taggedby the “safety-
critical” label. In the ODAS, all functions are safety related, except those implementing the image processing.
The camera data are used as a complement to the LiDAR andRADARones, but they are notmandatory to detect
potential obstacles. Therefore, all the inner behavioral components of the Capella ODAS model are labeled as
“safety-critical”, and all the corresponding tasks in the Amalthea model are tagged SIL4 by default, except the
camera processing tasks. As expressed in requirement [SYS-ODAS-REQ-208] in D1.4 [9], SIL4 software must be
executed on a hardware platform with a 2oo2 architecture.

Specializations. In the ODAS use-case, the processing of the camera images may be offloaded to a GPU
for better performances. This may lead to optimizations from a performance point of view even if it is not the
case from the energy consumption one. The AMPERE tool chain will analyze the different options and produce
an optimal combination from both point of view. To express the option among the different implementations,
we use the specialization mechanism in Amalthea described in Section 3.2.

4.3 Use-Case Evaluation
Themethods and tools developed in AMPERE and their interoperability will be evaluated using both use-cases.
The use-case model will be nearly identical which highlights the benefit of a model-based approach that al-
lows industry partners to explore and optimize parallelism and performance on modern high performance
embedded platforms while still adhere to (non-)functional requirements. We will highlight the differences in
themodel for both platforms under evaluation and explain the setup how to evaluate the developedmethods.

4.3.1 Automotive Use-case with Xilinx Ultrascale+
The AMPERE workflow for evaluating the use-case on the Xilinx Ultrascale+ is displayed in Figure 22. The
platform has four Cortex A cores and one FPGA. The software model will include the redundancy definitions
and the specializations for the GPU and the FPGA. Only the FPGA based specializations will be considered
in the multi-criteria optimization due to the lack of an available GPU on the board. The Cortex A53 cores
of both boards are not certified to ASIL B which would violate the requirements specified in the use-case
model2. Adhere to mapping requirements is a key part of the multi-criteria toolchain of AMPERE. Fulfilling
2Although the Cortex-R5 cores are certified for ASIL C and SIL 3, these are not accessible by PikeOS, thus, they will not be used.

18

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

this requirement, if certified core are available is a minor technical extension. That is the reason to relax this
requirement in the evaluation. In a real product the availability of certified cores will be ensured.
We deal with the ECM component in the Xilinx evaluation in introducing a mapping constraint, that will bound
the ECM application to an isolated core while all other components will be executed on the other cores. On
top of that the PikeOS Hypervisor will be deployed on the system for spatial separation the ECM.
The ECM will be deployed on the automotive OSEK/VDX certified Hard Real Time Operating System ERIKA OS
while the other components will execute on a Linux system. To bridge the communication between the safe
ERIKA OS and the Linux an adapter between microROS and ROS2 was implemented to connect the ECM on
ERIKA that uses microROS while the Linux system will use ROS2. OpenMP and FRED[13, 14] will be used to
exploit the parallelism of the software and to make use of the FPGA accelerator.
The multi-criteria optimization design flow is explained in detailed in D2.4 [15]. On the Xilinx platform AMPERE
will optimize energy consumption and real-time requirements at the same time. That means deadlines will be
met while energy consumption will be reduced if possible.

Figure 22: Automotive Use-Case - Xilinx

4.3.2 Automotive Use-case with NVIDIA Jetson AGX
The NVIDIA Jetson AGX platform has eight cores, no FPGA but a GPU. In this evaluation we will use CUDA
to offload computation to the GPU instead of FRED for the FPGA offloading. Also only one Linux system will
be deployed on this platform since the PikeOS hypervisor cannot be deployed on this platform due to lack of
available detailed documentation.
The use-case model has only a few changes. The communication scheme for the ECM application will be
changed to ROS2. And we will change the evaluation of the ASIL B requirement on this platform. Again, the
platform is not ASIL B certified. In this example we are not using PikeOS and ERIKA OS. Separation of PikeOS
and the certifid ErikaOS is therefore not available. In this case we require redundant execution of the ASIL B
runnables on separated cores. The AMPERE toolchain will automatically take care of this redundancy in the
execution.
In the multi-criteria optimization we follow two different strategies. One strategy is to minimize the energy
consumption while fulfilling all timing requirements. The other strategy will optimize the timing requirements.
Optimizing timing requirements means to e.g. provide the biggest slack between response time of a task and
its deadline. This optimization will still adhere the maximum energy budget requirement.

19

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

Having both options is beneficial since depending on the system either timing (hard-real time) or power con-
sumption (soft real-time) with high power consumption in a difficult environment, e.g. in the front wind shield
of a car or near a combustion engine is more important. The workflow for evaluating the automotive use-case
on the Jetson is displayed in Figure 23.

Figure 23: Automotive Use-Case - Jetson

4.3.3 Railway Use-Case with NVIDIA Jetson AGX
The evaluation of the AMPERE tool chain with the NVIDIA board on the railway use-case faces the same chal-
lenge as the automotive use-case, since the platform is not compliant with SIL4 software. Therefore, we im-
plement the 2oo2 architecture requirement by requiring redundancy of SIL4 runnables and separation of their
executions on different cores. This can be done thanks to the corresponding redundancy and separation con-
straintsmechanisms in Amalthea. The overallmulti-criteria strategy is the sameas for the automotive use-case.
The workflow for evaluating the railway use-case on the Jetson is displayed in Figure 24.

Figure 24: Railway Use-Case - Jetson

20

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

5 Conclusions
This document presented the contributions for WP1, related to DSML. These contributions can be summarized
as:

1. AMALTHEA/Capella extensions in Chapter 3, proposing extensions formiddleware communication (ROS)
and execution behavior (Section 3.1), for modeling runnable specializations (Section 3.2), for capturing
performancemetrics (Section 3.3), formodeling DVFS-enabled platforms, for taggingmodeling elements
with safety requirements (Section 3.5);

2. Refined description of the Automotive/Railway use-cases, in Chapter 4, and how they will benefit of
the toolchain under development in AMPERE, and how they will be deployed and optimized on their
respective target platforms.

At this point, all DSML extensions required by the AMPERE ecosystemwere proposed. However, the final steps
to be performed in AMPERE in the context of WP1, are related to the validation of the proposed extensions
and methodology by integration within the two demonstrator use-cases AMPERE is building, and the use of
these extensions in an integrated and consistent way throughout the whole design, prototyping/development,
optimization and validation process. This concerns, for example, the problem of translating the information
provided in the extensions described above, from the DSML modeling language format, to a format compati-
ble with the end-to-end AMPERE workflow described in D2.4 [15] (e.g., TDG file format and/or entries in the
accompanying optimization configuration file).

21

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

6 Acronyms and Abbreviations
ACC Adaptive Cruise Control

ATDB AMALTHEA Trace Database
CPU Central Processing Unit

D Deliverable
DAG Direct Acyclic Graph

DSML Domain Specific Modeling Language
DVFS Dynamic Voltage and Frequency Scaling
ECM Engine Control Management
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
MDE Model-Driven Engineering
MS Milestone

ODAS Obstacle Detection Avoidance System
OPP Operating Performance Points
OS Operating System
PCC Predictive Cruise Control
PT Powertrain Control

ROS Robot Operating System
SLG Synthetic Load Generator
SIL Safety Integrity Level
T Task

TDG Task Dependency Graph
THR Tolerable Hazard Rate
TSR Traffic Sign Recognition
UC Use-Case
WP Work Package

WCET Worst-Case Execution Time

22

D1.5 - Meta model-driven abstraction and model-driven extensions and
use-case enhancements
Version 1.0

7 References
[1] AMPERE, “D1.3. First release of the meta model-driven abstractions,” 2021.
[2] ——, “D1.1. System Models Requirement and Use Case Selection,” 2020.
[3] ——, “D2.3. Programming model extensions and the multi-criteria performance-aware component,”

2022.
[4] ——, “D2.2. First release of the meta parallel programming abstraction and the single-criterion

performance-aware optimisations,” 2021.
[5] L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch, “DAPHNE - An automotive benchmark suite for parallel

programming models on embedded heterogeneous platforms: work-in-progress,” in Proceedings of the
International Conference on Embedded Software Companion, 2019, pp. 1–2.

[6] AMPERE, “D3.3. Energy optimisation framework, predictable executionmodels and analysis, and software
resilient techniques,” September 2022.

[7] G. Ara, T. Cucinotta, and A. Mascitti, “Simulating execution time and power consumption of real-time
tasks on embedded platforms,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, ser. SAC ’22. New York, NY, USA: Association for Computing Machinery, 2022, p. 491–500.
[Online]. Available: https://doi.org/10.1145/3477314.3507030

[8] AMPERE, “D3.2. Single-Criterion Energy-Optimization Framework, Predictable Execution Models, and
Software Resilient Techniques,” 2022.

[9] ——, “D1.4. Analysis of functional safety aspects on multi-criteria optimization and final release of the
test bench suite,” 2021.

[10] “PCC Use-Case Model,” https://gitlab.bsc.es/ampere/ampere-project/-/tree/master/Software/PCC%
20model%20in%20Amalthea/PCC_UseCase.

[11] S. Kramer, D. Ziegenbein and A. Hamann, , “"Real world automotive benchmarks for free",” 2015.
[12] AMPERE, “D1.2. Analysis of functional safety aspects on single-criterion optimization and first release of

the test bench,” 2022.
[13] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A framework for supporting real-

time applications on dynamic reconfigurable fpgas,” in Proc. of the IEEE Real-Time Systems Symposium
(RTSS 2016), December 2016, pp. 1–12.

[14] AMPERE, “D4.3 Integrated run-time energy support, and predictability, segregation and resilience mech-
anisms,” 2022.

[15] ——, “D2.4 Multi-criteria optimization model transformation,” 2022.

23

https://doi.org/10.1145/3477314.3507030
https://gitlab.bsc.es/ampere/ampere-project/-/tree/master/Software/PCC%20model%20in%20Amalthea/PCC_UseCase
https://gitlab.bsc.es/ampere/ampere-project/-/tree/master/Software/PCC%20model%20in%20Amalthea/PCC_UseCase

	1 Executive Summary
	2 Introduction
	3 DSML extensions
	3.1 AMALTHEA Extensions for middleware communication and execution behaviour
	3.1.1 Loops
	3.1.2 Conditions on channel fill level
	3.1.3 Example: Loop over Channel inputs

	3.2 AMALTHEA Extensions for parallelism and heterogeneity
	3.2.1 Parallelism and specializations
	3.2.2 New components in AMALTHEA
	3.2.3 Example: Propagation of specializations

	3.3 AMALTHEA Extensions for timing metrics
	3.4 AMALTHEA Extensions for power-aware hardware capabilities
	3.5 CAPELLA Extensions for safety
	3.5.1 Safety Functions and SIL levels
	3.5.2 DSMLs extensions

	4 Use-Cases
	4.1 Automotive Use-Case
	4.1.1 Communication between Applications
	4.1.2 Requirements
	4.1.3 Specializations

	4.2 Railway Use-Case
	4.3 Use-Case Evaluation
	4.3.1 Automotive Use-case with Xilinx Ultrascale+
	4.3.2 Automotive Use-case with NVIDIA Jetson AGX
	4.3.3 Railway Use-Case with NVIDIA Jetson AGX

	5 Conclusions
	6 Acronyms and Abbreviations
	7 References

