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Executive summary

This deliverable covers the work done during the second phase of the project within WP2. The deliverable
spans 8 months’ work, as defined in the Grant Agreement [1] (from month 8 until month 15, including infor-
mation that was presented in the first Technical Review, but not in D2.1 [2]), and includes the work done in
Task 2.2, Meta parallel programming abstraction and parallel programming model extensions and Task 2.3,
Performance-aware transformation techniques for the defined period of time, to reach milestone 2 (MS2).

Concretely, the deliverable covers the activities conducted within WP2 towards the implementation of a code
synthesis component capable of generating the optimized parallel code based on the requirements specified
in the DSML and the information gathered by the tools for multi-criterion analysis. For this purpose, Task 2.3
studies automatic parallelization techniques, via a code synthesis tool, to transform the meta model-driven ab-
straction (described in D1.3 [3]) into the meta parallel programming abstraction (described in this deliverable).
Furthermore, Task 2.2 defines the meta parallel programming model interface, which gathers the informa-
tion exposed in the meta model-driven abstraction, and also the results of the analysis of the multi-criterion
optimization layer.

The targets at MS2 are: (1) a first release of the meta parallel model abstraction upon which model transfor-
mations can be applied, and (2) an initial set of model transformation methods targeting only parallel perfor-
mance. The first milestones of Tasks 2.2 and 2.3 have been carried out successfully, and all objectives of MS2
have been reached and documented in this deliverable. Furthermore, we have extended the work expected
in this deliverable to tackle the correctness of the techniques developed in Task 2.3 towards automatic paral-
lelization. The main motivation for this extension is to maintain the correct-by-construction paradigm of the
model-driven engineering (MDE) systems we target in AMPERE, and thus provide some safety guarantees with
respect to the model.

To show the pipeline implemented for AMPERE towards increasing the performance of CPSs we have
recorded a demonstration in a video and made it available at B2DROP repository of BSC through the follow-
ing link: https://b2drop.bsc.es/index.php/s/yPGEn2wjGrAddeN and by using the password:
RRAXqgZ3.


https://b2drop.bsc.es/index.php/s/yPGEn2wjGrAddeN
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1 Introduction

WP2 aims to develop a meta parallel programming abstraction independent of the underlying processor archi-
tecture, capable of capturing all system functional and non-functional requirements, as well as incorporating
the parallel semantics required to enable an efficient model transformation, optimized for performance, tim-
ing, resiliency, cyber-security and energy-efficiency. Figure 1 depicts the AMPERE software architecture, with
the different components and the communication between them. WP2 is enclosed in the greenish box in the
middle. This deliverable, including tasks T2.2 and T2.3, corresponds to the dotted green box containing the
meta parallel programming model abstraction and the transformation into a high-level parallel programming
model, particularly OpenMP.
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Figure 1: AMPERE’s software architecture.

More specifically, Figure 2 shows the detailed pipeline communicating the software components included in
the green box part of the AMPERE software architecture from Figure 1. The components involved in this de-
liverable are highlighted in green, and the interfaces communicating them are outlined in the edges (further
details in deliverable D6.2 [4]).
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Figure 2: AMPERE’s offline components pipeline.

Figure 3 shows the synergies between the two tasks contributing to this deliverable (i.e., T2.2 and T2.3) and
those tasks from others WPs that are also due by MS2'. Furthermore, Table 1 relates the tasks mentioned in
Figure 3 together with the deliverables they will be included in.

'Since both T2.2 and T2.3 span more than this deliverable, there are synergies that are not represented here and will appear in D2.3



D2.2 - Parallel abstraction and performance-aware component AMerER ’
Version 1.0

3.2 T1.4 T3.3 T3.4

/

f N \,*\/‘

D22 (122 123 T T1.2

7 o

Q

N

Figure 3: Synergies between T2.2 and T2.3, from WP2, and tasks in other WPs.

Table 1: Tasks and deliverables related to D2.2

Deliverable D. leader | Task T. leader
D1.2. Analy5|'s of fun.ctlo.nal saf.et){ . T1.2. Generation of AMPERE test bench
aspects on single-criterion optimisation BOS suite and use case preparation BOS
and first release of the test bench suite prep
D1.3. First release of the T1.4. Meta model-driven abstraction and

. . SSSA . . SSSA
meta model-driven abstraction model-driven extensions
D3.2. Single-criterion energy optimisation T3.2. Energy optimisation strategies
framework, predictable execution models | ETHZ T3.3. Predictable execution models BSC
and software resilient techniques T3.4. Resilient software techniques
D6.3. Single-criterion AMPERE ecosystem | THALES T6.2. Synthesis tool integration BSC

This deliverable is a continuation of D2.1, Model transformation requirements [2]. In that deliverable, we pre-
sented (a) an analysis of different model-driven engineering (MDE) technologies, including AMALTHEA, AU-
TOSAR and CAPELLA, and (b) an analysis of different parallel programming models (PPM), including OpenMP,
OmpSs, OpenCL and OpenMP. As a result of these analysis, and given the requirements of the project on the
DSML level [5], the AMPERE project will use CAPELLA for high-level modeling (particularly of the Obstacle
Detection Avoidance System -ODAS- use case), and AMALTHEA [6] to describe the low level details (e.g., re-
quirements for performance) of the system at the DSML level, and OpenMP [7] to orchestrate parallelism in
the host, and between the host and the accelerator devices.

To reach the goals of WP2, this deliverable continues the work started in D2.1, and contributes as follows:
Chapter 2 describes the parallelism exposed in the vanilla version of AMALTHEA, and introduces the extensions
proposed in the model for describing parallelism; Chapter 3 describes the translation of an AMALTHEA model
exploiting inter-runnable parallelism into OpenMP via the enhanced AMALTHEA code synthesis tool; Chapter 4
provides a high-level description of the meta parallel programming abstraction (further defined in D6.2 [4]);
Chapter 5 describes the benefits of using a code synthesis tool together with HPC correctness techniques to
maintain the correct-by-construction paradigm of the MDE technologies; Chapter 6 shows a preliminary eval-
uation of the proposed framework for parallelism in terms of programmability, portability and performance;
and Chapter 7 provides the conclusions extracted from the work done for this deliverable.

(Programming model extensions and the multi criteria performance-aware component).
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2 Parallelism in AMALTHEA

Based on how components are described with AMALTHEA, this standard enables three different levels of gran-
ularity in which parallelism can potentially be exploited:

1. Among tasks: this is the only option currently feasible, and it is done through the OS scheduler. It pro-
vides a set of synchronization mechanisms among tasks to ensure the correct order of execution.

2. Among runnables: this option is currently not supported because the models force runnables to execute
sequentially within a task.

3. Inside runnables: this option is transparent to the MDE standards because the internals of the runnables
are not exposed to the model, and hence it is not visible to the OS scheduler.

Based on our analysis, we concluded that [2]:

1. Parallelism among tasks is a coarse-grained level of parallelism suitable for being exploited by the OS,
as it is now.

2. Parallelism among runnables is a fine-grained level of parallelism suitable for being exploited by the
high-level parallel programming model, which can orchestrate the parallel execution in a potentially
heterogeneous (host + accelerator) system.

3. Parallelism inside runnables is an even finer-grained level of parallelism suitable for being exploited by
a parallel programming model (not necessarily the same) in either the host or a dedicated accelerator
(e.g., GPU or FPGA).

Currently, AMALTHEA only supports the use tasks as units of parallelism. Therefore the only way to run con-
current runnables is dividing them into different tasks. Then, these newly created tasks must be properly syn-
chronized with the rest of the tasks, as well as being assigned to a specific scheduler to ensure the correct
order of execution. This forces inconveniently the programmer to do the additional exercise of including cer-
tain runnables into artificial tasks and relate these tasks by means of stimuli, i.e., event-based model instead
of data accesses, i.e., data-flow model. This is the case, for example, of the modeling of accelerator devices
proposed in the WATERS 2019 challenge, where host-to-device and device-to-host data movements have to
be exposed in explicit tasks, reducing the programmability of the system, as well as the portability, since the
model is then tied to a specific architecture. Clearly, this strategy goes against MDE principles.

To avoid this inconvenience, and enhance the programmability and portability of the system, we take advan-
tage of the custom properties available in AMALTHEA to describe two new characteristics in runnables:

Host parallelism: This property describes a runnable as a potentially concurrent unit of work that is to
be in the host system.

Accelerator parallelism: This property describes a runnable as a potentially concurrent unit of work that
is to be executed in and accelerator device (e.g., GPUs).

To illustrate the modifications implemented targeting performance, Figure 4a shows the workflow of a sim-
ple application enriched with information on how the application can be modeled with AMALTHEA tasks and
runnables. The application runs count times a pipeline composed of four steps: (1) read an image; (2) convert
the image to a suitable format; (3) two different concurrent process on the image to produce results; and (4)
merge and print the results. The figure also shows which parts are suitable for runnable granularity (green line
for sequential runnables, and orange line for concurrent runnables, i.e., runnables not causing race conditions)
or task granularity (yellow line), considering the AMALTHEA model.

Figure 4b shows the modeling of the application shown in Figure 4a using the extensions proposed for
AMALTHEA in the form of custom properties. Specifically, the runnables corresponding to AnalysisA and
AnalysisB are augmented with the accelerator parallelism property, while the rest of the runnables are aug-
mented with the host parallelism property. Additionally, the model includes the data consumed and produced
by each runnable in the form of labels. For example, runnable AnalysisA consumes image and produces
resultA. This labels describe a data-flow execution model within the task that allows generating a Direct
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i=[0:count-1]

» @ read_image
« @ convert_image
» @ "host parallelism” -> (Boolean) true
w *(3 Activity Graph
= read Image
» |25, Ticks
& write Image
« @ analysisA
» @ "accelerator parallelism” -> (Boolean) true
~ *(3 Activity Graph
& read Image
» 25, Ticks
& write ResultsA

« @ analysisB
» ™ "accelerator parallelism” -= (Boolean) true
~ *(3 Activity Graph
& read Image
» |25, Ticks
& write ResultsB

merge

I
___________ N el

» @ merge_results
(a) Application’s workflow. (b) AMALTHEA model. (c) DAG (TDG).

Figure 4: Example of modeling parallelism with AMALTHEA.

Acyclic Graph (DAG) connecting the runnables and representing the parallelism exposed in the application.
The DAG resulting from the model is depicted in Figure 4c.

This DAG (also called Task Dependency Graph, TDG, in OpenMP jargon) is the meta parallel programming ab-
straction that the code synthesis tool will generate for the compiler and analysis tools to generate and analyze
code targeting performance, time predictability, energy efficiency and resilience. The interface used to define
the TDG is described in D6.2, Refined AMPERE ecosystem interfaces and integration plan [4].
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3 AMALTHEA code synthesis tool

The code synthesis tool used in AMPERE is the AMALTHEA synthetic load generator (SLG). It comes as a plugin
of the APP4AMC Eclipse project [8] used as domain specific modeling language (DSML). This section describes
the augmentations added in the code synthesizer and the logic implemented for the automatic transformations
from DSML to PPM to exploit performance. Further details on the extensions in the code synthesis tool are
included in Section 9.1.

3.1 The AMALTHEA SLG

The AMALTHEA modeling software already includes a code synthesis tool capable of transforming the model
into sequential C code. Runnables and tasks are created as C functions, while labels are transformed as global
variables of the application. To simulate the OS scheduler the code generator makes use of Pthreads: one
Pthread is created per each stimulus, and it runs indefinitely in an infinite loop with the stimuli periodicity,
spawning the corresponding tasks.

As an illustration, Figure 5 shows snippets of the code generated for the application presented in Figure 4 by
the AMALTHEA SLG, as provided by BOSCH.

3.2 Transformations targeting parallelism

We have modified the AMALTHEA SLG to include runnable functions into OpenMP task or target con-
structs, depending on the associated parallel property. Moreover, in order to properly define the depend syn-
chronization clause and so avoid data races, we analyze the label usage (read or write) of all the runnables con-
tained within an AMALTHEA task. This analysis allows to determine the parallelism exposed by the runnables
and so determine the corresponding dependencies. It is important to remark that this analysis is based on the
description of the usage of labels in the AMALTHEA model. Therefore, if runnables make an internal usage of
labels different to the one describe in the model, race conditions may potentially occur’. The modifications
implemented in the AMALTHEA SLG are described in Section 9.1.

Figure 6 exemplifies the transformations implemented in the augmented APP4MC SLG. Particularly, Figure 6a
shows the model for code in Figure 4b highlighting the parts used by the AMALTHEA SLG to generate the code in
Figure 6b. All runnables including the host parallelism custom property are annotated with an OpenMP task
directive, i.e., run_read_image, run_convert_image and run_merge_results. Similarly, those runnables
including the accelerator parallelism custom property are annotated with an OpenMP target directive, i.e.,
run_analysisA and run_analysisB. Furthermore, labels are transformed into dependency clauses, e.g.,
run_analysisA reads label Image and writes label ResultsA, and the SLG lowers this information into a
depend (in:Image) and a depend (out : ResultsA) clause, respectively.

Chapter 5 presents the mechanisms needed to prevent race conditions, and so ensure a correct parallel execution.
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void *stepstimulusEntry () {

}

Task1();

pthread_t stepstimulus;
for (;;){
pthread_create (&
stepstimulus , NULL

]
2
3
4
5 void *stepstimulusLoop () {
6
7
8

stepstimulusEntry ,
NULL) ;

9 usleep (1000000) ;

10 }

1}

12

13 int main(int argc, char **

argv) {

14 pthread_t stepstimulus_;

15 pthread_create (&
stepstimulus_, NULL,
stepstimulusLoop , NULL
);

16 pthread_join (stepstimulus_
, NULL);

17}

(a) Program entry point.

1 void Task1 () {

2 run_read_image("");

3 run_convert_image("");

4 run_analysisA("");

5 run_analysisB("");

6 run_merge_results("");

7}

8

owvoid *Taski_entry (){ Task1();

}

(c) A task.

1 void read_Image(int labelAccessStatistics) {

2
3

int numberOfBytes = 62500;
for (int repeat = 0 ; repeat <
labelAccessStatistics; repeat++){
int arraysize = sizeof(Image) / 4;
int leftOverElements = arraysize % 10;
int arraySizeWith1OMultiples = arraysize —
leftOverElements;

int i = 0, a = O;
for (i = 0; i < arraySizeWith10Multiples;
i =i+ 10) {
a = Image[i]; a = Image[i+1]; a =
Image[i+2];
a = Image[i+3]; a = Image[i+4]; a =
Image[i+5];
a = Imagel[i+6]; a = Image[i+7]; a =
Image[i+8];
a = Image[i+9];
}
for(; i<arraysize; i++) {
a = Imagelil;
}

(b) Read access to a label.

1 void run_analysisA (char* coreName) {

5}

read_Ilmage (1) ;

executeTicks_DiscreteValueConstantimpl
(1000000000) ;

write_ResultsA (1) ;

(d) A runnable.

Figure 5: Automatically generated code with the vanilla APP4MC SLG for the AMALTHEA model in Figure 4b.

i

@ read_image
< convert_image

(

» @ "host parallelism” -> (Boolean) true ]

=+ Activity Graph
& read Image

I
=
A
&
a

E write Image
< analysisA

[ » @ "accelerator parallelism" -> (Boolean) true]

= =Ly Activity Graph
& read Image
» 2 Ticks

& write ResultsA

& analysisB

» o "accelerator parallelism” -> (Boolean) true ]

i

(a) AMALTHEA model augmented with
parallelism features (as in Figure 4b).

= *i Activity Graph
& read Image

& write ResultsB

@ merge_results

s
=
3
2
i

1 #pragma omp parallel
2 #pragma omp single

3 {

#pragma omp task depend(out:Image)
run_read_image("");

#pragma omp task depend (inout:Image)
depend(inout:Image)
run_convert_image ("");

#pragma omp target depend (in:Image)
depend (out :ResultsA)
run_analysisA("");

#pragma omp target depend (in:Image)
depend (out :ResultsB)
run_analysisB("");

#pragma omp task depend(in:ResultsA , ResultsB)
run_merge_results("");

(b) Automatically generated OpenMP code.

Figure 6: Sample transformation using the augmented AMALTHEA SLG for application in Figure 4a.
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4 The meta parallel programming abstraction

The OpenMP code automatically generated by the code synthesis tool can be represented in the form of a task
dependency graph (TDG). As an illustration, the TDG shown in Figure 4c holds the computation implemented in
the code in Figure 6b. This representation is the meta parallel programming abstraction the AMPERE partners
are using to communicate the different offline components of the software architecture, including the code
synthesis tool, the compiler, and the different analysis tools.

This section firstly describes the generation of the TDG (implementation details on the component imple-
mented during phase 2 of the project to extract the meta parallel programming model abstraction are pro-
vided in Section 9.2, and secondly summarizes provides a high-level description of the attributes envisioned
for the analysis of the different non-functional requirements targeted in the project, including performance,
time-criticality, energy efficiency and resilience. Furthermore, requirements to match the different DSMLs con-
sidered in the project are also described. The specific interface of the TDG is detailed in Dé.2, Refined AMPERE
ecosystem interfaces and integration plan.

4.1 Generation of the TDG

As described in deliverable D4.2 [9], the generation of the task dependency graph is implemented in the Mer-
curium [10] source-to-source compiler [11]. The overview of the implementation provided by Mercurium to
support the generation of the TDG is shown in Figure 7. The compiler implements a frontend for C and C++
that generates a common internal representation (IR) for the two languages. This IR is later used in the mid-
dlend phases performing a series of analysis and optimizations. Then, the IR is lowered, generating C/C++
code augmented with calls to specific runtime libraries (e.g., GCC’s libgomp in AMPERE’s case). Finally, a na-
tive compiler is transparently called to produce the final binaries that will be executed in the system (e.g., GCC
in AMPERE’s case).

User files
Input source code D Compiler components
C/C++ [] External tools
[] Runtime libraries
l - - —-—-----------"-"-"-""--"""""""T/TTT====" 1
- Intermediat '
C/C++ OpenMP n ermeh iate !
frontend frontend phases !
: \L Lowering
1
Data-flow [~ Code _>|
1
| analyses |«— transformations SMP | l Accelerator |
! i
| TDG
1
! 1
e N C/C++
codegen
v
OpenMP ,—'Linkin Native
binary L—,—grl compilation

I
OpenMP RTL 1 Embedding J4- - - - - b

User libraries

Figure 7: Mercurium pipeline for the generation of the TDG.

Figure 8 shows the TDG generated by Mercurium for the code in Figure éb. This structure, further detailed
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in deliverable 4.2, represents a sparse matrix containing all tasks in the system, and the dependencies among
them. Furthermore, it contains definitions of the libgomp runtime functions (i.e., gomp_set_tdg) needed by
the compiler for the final linking with the runtime library.

4.2 Augmentations for non-functional requirements

The original TDG generated by Mercurium contains the data structures needed by the GCC'’s libgomp runtime
library to orchestrate a parallel execution driven by the TDG instead of being driven by the users code (i.e.,
loops, conditional statements and task dependencies). As a consequence, there is some information included
in that TDG that is unnecessary from the AMPERE’s offline analysis tools point of view for the analysis of the
different non-functional requirements. The simplifications of Mercurium’s TDG have been implemented, to-
gether with the augmentation of the TDG with information about performance. This work is done with a
Python script further described in Section 9.2. Following subsections detail the modifications implemented for
performance (the target at MS2), and envisioned for the rest of non-functional requirements, including time
criticality, energy efficiency and resilience, as well as the information regarding DSML constraints that needs
to be propagated to the offline analysis tools.

4.2.1 Performance

In order to analyze the performance of the system, we have enriched the basic TDG structure with information
about the execution time of each OpenMP task, i.e., a node of the TDG. This information is extracted with the
Extrae [12] tracing tool by executing the application while Extrae traces aspects like the instantiation and the
execution of OpenMP tasks. Then, the Extrae traces are processed by a Python script (detailed in Section 9.2)
that computes the total execution time of the tasks and enriches the TDG generated by the Mercurium source-
to-source compiler with the execution times. Figure 9 shows the software components and the execution
pipeline required for the generation of performance information. First the model is transformed into parallel
code using OpenMP, as explained in Chapter 3. Then, Mercurium is used to generated two outputs: on one
hand, the target code transforming OpenMP directives into calls to the target runtime library (i.e., libgomp);
and on the other hand, the TDG that is later used by the parallel runtime library to orchestrate the parallel
execution. Then, Extrae is used during the offline execution of the application to trace performance. Finally, a
Python script joints the information of the original TDG with the information of the traces to generate the TDG
to be used by the AMPERE'’s offline analysis tools.

Figure 10 shows an execution trace generated by Extrae for the code in Figure 6b after compiling with Mer-
curium+GCC and running with GCC’s libgomp. By using the Python script described in Section 9.2, we are able
to extract information about execution time and other performance counters, required by the different of-
fline analysis tools of the AMPERE software ecosystem. Figure 11 shows the TDG resultant from processing the
Mercurium’s TDG shown in Figure 8, and the Extrae trace in Figure 10 with the proposed script. The execution
time of each task is stored in the execution_time member of the gomp_tdg_node structure, and the different
papi counters gathered during the execution of the code are stored in the papitot_counter_vals, particularly:
total number of instructions (42000050), total number of cycles (42000059), L1 cache misses (42000000),
L2 cache misses (42000002), L3 cache misses (42000008), total branch instructions (42000055), conditional
branches misspredictions (42000046), and total allocation stalled cycles (42001047).

In the future, we are considering to include in the TDG information about the amount of data produced and
consumed by each task. This information can be extracted from the AMALTHEA model and from the automat-
ically generated OpenMP code, as well. It will be useful to understand the cost of data movements an decide
between host or accelerator implementations of a given runnable.
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AMPER

1 // File automatically generated

2 #include <stdio.h>

3 struct gomp_task;

4 struct gomp_tdg {

5 unsigned long id; // Task instance ID

6 struct gomp_task *task_ptr; // Pointer to the runtime task structure
7 unsigned short offin; // Starting position within gomp_tdg_ins

8 unsigned short offout; // Starting position within gomp_tdg_outs

9 unsigned char nin; // Number of input dependencies

10 unsigned char nout; // Number of output dependencies

il signed char cnt; // Number of dependent tasks:

12 // (1) cnt == —1 Task executed or not created
13 // (2) cnt == 0 task being executed

14 // (8) cnt > 0 number of waiting tasks

15 int map; // Thread assigned to the task (static scheduler)
16 long task_counter; // Private counter to compute execution time
17 long task_counter_end; // Private counter to compute the final time
18 long runtime_counter; // Private counter to compute runtime overhead
19 long taskpart_counter; // Private counter to compute task part’s time
20 struct gomp_tdg *next_waiting_tdg; // Pointer for lazy task creation
21 unsigned int pragma_id; // ldentifier of the task contruct

22 void* data; // Data required by the task

3 };

24

25 struct gomp_tdg gomp_tdg_0O[5] = {

26 {.id = 1,.task_ptr = 0,.0ffin = 0,.offout = O0,.nin = O,.nout = 1,.cnt = —1,.map = —1,.

task_counter = 0,.task_counter_end = O,.runtime_counter

0,.next_waiting_tdg = NULL,.pragma_id = 1},

27 {.id = 2,.task_ptr = 0,.0ffin = 0,.offout = 1,.nin = 1,.nout = 2,.cnt = —1,.map = —1,.
task_counter = 0,.task_counter_end = O,.runtime_counter = O,.taskpart_counter =
0,.next_waiting_tdg = NULL,.pragma_id = 2},

28 {.id = 3,.task_ptr = 0,.0ffin = 1,.0ffout = 3,.nin = 1,.nout = 1,.cnt = —1,.map = —1,.
task_counter = 0,.task_counter_end = O,.runtime_counter = O,.taskpart_counter =
0,.next_waiting_tdg = NULL,.pragma_id = 3},

29 {.id = 4,.task_ptr = 0,.0ffin = 2,.0offout = 4,.nin = 1,.nout = 1,.cnt = —1,.map = —1,.
task_counter = 0O,.task_counter_end = O,.runtime_counter = 0O,.taskpart_counter =
0,.next_waiting_tdg = NULL,.pragma_id = 4},

30 {.id = 5,.task_ptr = 0,.0ffin = 3,.0ffout = 5,.nin = 2,.nout = O0,.cnt = —1,.map = —1,.
task_counter = 0,.task_counter_end = O,.runtime_counter = O,.taskpart_counter =
0,.next_waiting_tdg = NULL,.pragma_id = 5}

3}

32

33 unsigned short gomp_tdg_ins_O[] = {0, 1, 1, 3, 2};
34 unsigned short gomp_tdg_outs_O[] = {1, 3, 2, 4, 4};
35

3 // All TDGs are stored in a single data structure
37 unsigned gomp_num_tdgs = 1;

38 struct gomp_tdg *gomp_tdg[1] = {gomp_tdg_0};

39 unsigned short *gomp_tdg_ins[1] = {gomp_tdg_ins_0};
40 unsigned short *gomp_tdg_outs[1] = {gomp_tdg_outs_0};
4 unsigned gomp_tdg_ntasks[1] = {5};

42 unsigned gomp_maxlI[1] = {0};

43 unsigned gomp_maxT[1] {5};

44

45 // Initialize runtime data—strucures from here.

46 // This code is called from the compiler.

@

S

@

0,.taskpart_counter =

47 extern void GOMP_init_tdg (unsigned num_tdgs, struct gomp_tdg **tdg,
48 unsigned short ** tdg_ins, unsigned short ** tdg_outs,
49 unsigned *tdg_ntasks, unsigned *maxl, unsigned *maxT);

50 extern void GOMP_set_tdg_id (unsigned int);

51 void gomp_set_tdg(unsigned int tdg_id) {

52 GOMP_init_tdg(gomp_num_tdgs, gomp_tdg, gomp_tdg_ins,
gomp_maxl, gomp_maxT);

53 GOMP_set_tdg_id(tdg_id);

54 }

gomp_tdg_outs,

gomp_tdg_ntasks,

Figure 8: TDG generated by Mercurium and consumed by the modified libgomp for the code in Figure 6b
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Figure 10: Extrae trace

4.2.2 Time criticality

The information from the TDG required for timing analysis is related to performance traces and model refer-
ences per node. The first requirement is the inclusion of information about the Runnable and the Task
of the model the node of the graph relates to. This will be substantial for the analysis to directly map the
performance traces to a Runnable.

Second, and most important for the analysis, is the actual performance traces of the OpenMP task. These
traces should include the time elapsed of the task and a set of performance counters. The size of the set
is specified per execution due to the fact that it will depend on the configuration defined for Extrae prior
to the execution - or perf when dealing with runtime analysis - and on the actual performance counters the
target platform has available. Linked to this set is also another collection that contains de identification of the
respective performance counter.

Another attribute to consider in the TDG is the accessed labels of the model in each node. With the information
of which and how many labels were accessed in a given Runnable it is possible to verify the performance
impact of those labels (and the actual memory accesses) on the Runnable.

4.2.3 Energy efficiency

The TDG includes the necessary information for the energy analysis front-end described in D3.2, which pro-
duces the necessary information for the energy-efficiency optimization. First, the energy front-end uses the
Extrae profiling information embedded in the TDG to extract the necessary characteristics of each individual
OpenMP task. As the energy optimizer operates at an OpenMP task granularity, the structure of the task does in
itself provide the necessary hooks to enable the profiler to run for all relevant components of the synthesized
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1 struct gomp_tdg_node {

2 unsigned long id; // Task instance ID

3 unsigned short offin; // Starting position within
structure

4 unsigned short offout; // Starting position within
structure

5 unsigned char nin; // Number of input dependencies

6 unsigned char nout; // Number of output dependencies

7 unsigned int pragma_id; // ldentifier of the task

8 int execution_time;

9 int papitot_counter_vals[8];

10 };

12 int papitot_counter_flags[8] =

tomp_tdg_ins

tomp_tdg_outs

{42000050,42000059,42000000,42000002,42000008,42000055,42000046,42001047};

14 struct gomp_tdg_node gomp_tdg_O[5] = {

15 {.id = 1,.task = 0,.o0ffin = 0,.offout = O0,.nin = 0,.nout = 1,.pragma_id

execution_time = 28197128 ,.papitot_counter_vals =

{403189113,108655172,5488 ,19087,3877765429026877265,0,0,01},
6 {.id = 2,.task = 0,.o0ffin = 0,.offout = 1,.nin = 1,.nout = 2,.pragma_id

execution_time = 46698362,.papitot_counter_vals =
{705431677,179251352,5925,21937,0,0,0,0}},

7 {.id = 3,.task = 0,.0offin = 1,.0offout = 3,.nin = 1,.nout = 1,.pragma_id

execution_time = 81164649 ,.papitot_counter_vals =
{1007817724,315802244,6323,13787,0,0,0,0}},

8 {.id = 4,.task = 0,.offin = 2,.offout = 4,.nin = 1,.nout = 1,.pragma_id

execution_time = 81356517,.papitot_counter_vals =

{1007660201,316205254,3752,12652,3877765429026877265,0,0,01}},
19 {.id = 5,.task = 0,.offin = 3,.offout = 5,.nin = 2,.nout = O,.pragma_id

execution_time = 45478912,.papitot_counter_vals =
{705304213,176841257,884,3522,3877810586007330912,0,0,0}}

20 };

21

22 unsigned short gomp_tdg_ins_O[] {o, 1, 1, 3, 2};

23 unsigned short *gomp_tdg_ins[1] = {gomp_tdg_ins_01};

24 unsigned short gomp_tdg_outs_O[] {1, 3, 2, 4, 4};

25 unsigned short *gomp_tdg_outs[1] = {gomp_tdg_outs_0};

N

w
1

a

Figure 11: TDG simplified and annotated with performance data

AMPERE system. Lastly, the energy optimizer makes use of the EnergyBudget custom attribute for tasks, to
communicate the non-functional requirements with respect to the allowed energy envelope. This information

is therefore forwarded from the AMALTHEA model to the energy front-end, by means of the TDG.

4.2.4 Resilience

Resiliency at the model level is being considered by augmenting selected AMALTHEA runnables with a redun-
dancy custom property (as described in deliverables D3.2 [13], containing the description of the technique, and
D4.2 [9], containing the implementation at runtime level). The redundant runnables are transformed into as
many OpenMP tasks as specified in the model by the AMALTHEA SLG. Later, the compiler (particularly Mer-
curium) generated the TDG, which already contains these redundant tasks as extra nodes in the graph. By
expressing this information in the structure of the TDG, it can be easily taken into account in performance,
timing and energy analysis. However, if we see in the future that the redundant tasks have to be annotated in

any manner, the TDG can easily be extended in the compiler.

4.2.5 DSML constraints

The DSMLs considered in the project (i.e., Amalthea and Capella) are being extended to support the require-
ments considered in the project. These requirements have to be included in the TDG for later consideration in
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the offline analysis.

4.2.5.1 AMALTHEA

As presented previously in Figure 4, the runnables analysisA and analysisB were annotated with the property
accelerator parallelism, meaning that these runnables are offloaded, in this case, for a GPU. This offloading
can be observed in the code 6éb, in lines 10 and 13, with the OpenMP keyword target.

The AMALTHEA extensions for offloading documented in the Deliverable 1.3 [3], complement the options for
offloading described in this deliverable by including an FPGA as a target device. In the future, the current
proposal presented in Figure 4 will be extended to capture in the model where the designer wants to offload
the runnables, i.e., into a GPU or an FPGA. For instance, using the example in Figure 4, the runnable analysisA
could be offloaded into a GPU while the runnable analysisB could be offloaded into an FPGA. This information
shall be captured in the TDG, as well.

4.2.5.2 CAPELLA

In the Capella model, the information added in the context of the AMPERE project are the (Automotive) Safety
Integrity Levels that can be assigned to software and hardware elements. This information will be modeled with
an enumeration property value in Capella, and translated to a tag in Amalthea. It is an important information,
since some safety requirements express constraints on the mapping between software and hardware elements
based on the (A)SIL level of these elements (see Deliverable 1.2 [14]). These constraints shall be expressed in
the Amalthea model, and then included in the TDG, so that they can be taken into account for schedulability
analysis and resource allocation.

13



D2.2 - Parallel abstraction and performance-aware component AMerER ’
Version 1.0

5 Assaying DSML correctness

Formal verification methods, including model checking and static analysis techniques, are typically used for the
verification of safety critical embedded systems. This methods usually rely on complex verification oriented
formal languages, and domain experts do not necessarily master these techniques. For this reason, verification
tools tend to be embedded in the MDE framework, so they are transparent to the designer.

The introduction of parallel features in DSMLs requires support in the verification methods counterpart, in
order to guarantee that the transformed parallel source code is free of race conditions. As exposed in Chapter 3,
our transformation is guaranteed to be correct from the perspective of the usage of labels as defined in the
AMALTHEA model. However, our analysis does not take into account how runnables actually access labels
internally. This chapter addresses this topic.

In the HPC domain, several efforts have been made towards the analysis and enhancement of the safety of
parallel systems. In the context of OpenMP, different works tackle the correctness of the task-based model.
Of particular interest are the mechanisms for the automatic definition of the data-sharing and the depen-
dency clauses of task directives [15, 16]. These techniques allow, on one hand, automatically defining these
attributes and hence alleviating programmers from the burden of manually doing this job, and, on the other
hand, checking the attributes defined by the programmer to verify the correctness of the program. Further-
more, techniques for the static analysis of OpenMP task-based programs considering inconsistencies in the
data-sharing and dependency clauses, as well as the detection of race conditions [17, 18] also show good re-
sults enhancing the safety of parallel applications. Additionally, there are works that tackle the safety of the
parallel framework with regard to the runtime implementation, and provide mechanisms for eliminating the
use of dynamic memory [19], or reducing the overall memory consumption of the system [11]. These works
aim at evolving the OpenMP runtime system to enable its qualification for the safety-critical domain. Finally,
extensions to the OpenMP specification have also been proposed to enhance the analyzability of the parallel
program [20], also facilitating its adoption in constrained environments.

Overall, the correctness techniques used for OpenMP in the context of HPC can be used for checking the model
at the DSML level by virtue of the automatic transformation, from model to parallel programming model, im-
plemented in the code synthesizer. This is, by validating the correctness of the task and target directives in
terms of race conditions, and the correctness of the data-sharing, dependency and mapping clauses with re-
gard to the access to variables within the tasks, we are able to validate the correctness of the custom properties
for expressing parallelism (i.e., host parallelism and accelerator parallelism), and the labels expressed by the
domain expert in each runnable at the AMALTHEA model level.

We have introduced two analyses implemented in the LLVM 11.1 compiler [21] (and further described in Sec-
tion 9.3) to analyze the correctness of the data-sharing and the dependency clauses of OpenMP tasks, and thus
detect possible errors in the AMALTHEA model. The compiler examines the source code inside OpenMP tasks,
and detects the adequate data-sharing [15] and possible data races; next, this information used to determine
the adequate dependency clauses [16], and the result is compared to the dependencies automatically inserted
by the code synthesis tool to the OpenMP tasks in order to generate a final report. The report details if the
possible data races are well covered by the current task’s dependencies, as well as detecting useless depen-
dencies. Since the code generator simply translates the label’s usage into OpenMP task directives, any error
detected with the correctness analyses comes from the system model.

The pipeline is represented in the Figure 12a, where a model is transformed to parallel source code and then
analyzed by LLVM. Finally LLVM generates a report for all the runnables encapsulated into OpenMP tasks, being
able to detect errors in the label’s usage of the model. If this is the case, the report indicates the specific error.
Figure 12b shows the report when the AMALTHEA model presented in Figure 4b does not define the label Image
of runnable convertimage as write.
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Software Parallel
Model Code 1 Analyzing runnable: Image converting
2 Analyzing label: @Image
System Code. 3 @Image detected scope: SHARED
Model > Synthesis | LLVM 4 Possible race condition, running Autodeps
Tool 5 ERROR: @Image should be OUT, check Software
Model
Analysis Report
(a) Pipeline. (b) Sample report.

Figure 12: LLVM implementation for checking OpenMP tasks correctness with regard to data-races.
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6 Evaluation

AMPERE™"

This section provides an evaluation of the benefits of combining parallel programming models with DSMLs,
like AMALTHEA, in terms of programmability, portability and performance.

6.1 Experimental setup

Following we describe the settings for performing the evaluation:

Processor Architecure. The experiments are performed on a NVIDIA Jetson TX2 board [22], which fea-
tures a GPU, a 4-core ARM CPU and 8GB of main memory.

Applications. We have selected two use cases, described with AMALTHEA, that are in charge of detecting
obstacles through different sensors and track them to avoid possible collisions:

The Obstacle Detection and Avoidance System (ODAS) from the railway domain included in the
AMPERE use-cases [14], and depicted in Figure 13a.

An autonomous driving application prototype from the WATERS 2019 challenge [23], depicted in
Figure 13b.

Modeling and synthesis software. To model the applications and to obtain the generated source code
of the model we use the AMALTHEA 1.0 [6] platform. The code synthesis tool has been modified as
specified in Chapter 3.

Compiler. The generated OpenMP source code is analyzed and compiled using LLVM 11.1[24].

Potential
Obstacles
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Boxes Objects
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Figure 13: LLVM implementation for checking OpenMP tasks correctness with regard to data-races.

6.2 Programmability and portability

Complex systems usually require to run kernels on accelerators to speed up the execution. The AMALTHEA
model supports runnables assigned to a GPU by including extra tasks into the model that are in charge of
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the data movements between the host and the accelerator, as proposed in the WATERS 2019 challenge, and
depicted in Figure 14a [23].

The data movements are required by the accelerator to obtain the input data, and by the host to receive the
final output. These are however implementation details related to the underlying processor architecture, ex-
posed in the system model to allow considering the communications between the different devices in the
timing analysis of the application. Moreover, exposing this aspects to the domain experts reduces the pro-
grammability of the system, as well as the portability, since the model is then tied to a specific architecture.
Clearly, this strategy goes against MDE principles.

Instead, our approach allows hiding the communication between the host and the device by defining runnables
with theaccelerator parallelism property as shown in Figure 14b. Then, our code synthesis tool is responsible
of transforming the accelerator runnable into an OpenMP target task, together with the data mapping clauses
necessary to model the communication between the host and the accelerator. This information will hence be
internally managed by the OpenMP runtime. Interestingly, previous works have already tackled the analysis
of such a system implemented with OpenMP. More specifically, timing guarantees have been provided for
heterogeneous systems composed of a multi-core host and a single accelerator device implemented with the
OpenMP accelerator model [25].

4
|
|
t

B SR { |
i Host to GPU 1 ‘ :
oo g - 1 GPU Kernel l
. GPU,;Ke mel .| Postprocessing | !
' GPUtoHost | T ’
/:::::{:::::" (:::_“ AMALTHEA Task

| Postprocessing | ] AMALTHEA runnable

(a) Original. (b) Proposed.

Figure 14: AMALTHEA modeling of host-device communication.

This modification in the high-level description of the model has been applied in the autonomous driving use
case. There, four different kernels are to run in a GPU: localization, sensor fusion, object detection, and
lane detection. Each of these kernels, modeled as a unique runnable inside a task, originally has two extra
dedicated tasks in the model managing the data transfers between the host and the GPU, one for sending
data and another one for receiving data. In our model, these 8 dedicated tasks are removed, as well as the
corresponding communications between the tasks, enhancing both the programmability and the portability
of the model, while maintaining the potential performance.

6.3 Performance

The introduction of parallelism at the model level aims at enhancing the performance of the resulting system.
This section evaluates the performance gain of the OpenMP source code resultant of the transformation of the
two AMALTHEA models. On one hand, the ODAS application detects objects in an image by fusing the infor-
mation coming from three sensors (camera, radar and lidar), and tracks them using a series of Kalman filters
to compute their trajectories. Finally, a collision checker model determines whether a collision will potentially
occur. We have modeled this system with AMALTHEA, as shown in Figure 13a, where the blue dotted boxes
represent AMALTHEA tasks, and the internal grey boxes represent the runnables inside the tasks. Camera,
radar, and lidar pipelines are inherently sequential, as well as the sensor fusion; each Kalman filter, instead,
targets the trajectory of a detected object, and so all these runnables are concurrent. Kalman filters are fast
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computation kernels that may benefit from the exploitation of fine-grain parallelism rather than the coarse-
grain parallelism offered by AMALTHEA tasks. Therefore, we have augmented the ODAS original model with
additional custom properties expressing the host parallelism inherent to the kalman filters. Consequently,
Kalman filters can be executed in parallel with OpenMP because the code generator automatically translates
those properties into OpenMP t ask directives and dependency clauses. The benefits obtained by introducing
a simple custom property in each of the runnables representing Kalman filters are shown in Table 2. The base-
line for computing the speedup is the (sequential) execution obtained with the model without the proposed
custom properties. A 2.62x speedup is achieved when considering 4 threads and measuring only the portion
of the parallel execution of kalman filters. This speed-up is reduced to 1.22x when taking into account the exe-
cution time of the whole application. When 2 threads are considered, the speedup achieved is 1.88x and 1.18x
respectively. This modest performance speed up is due to the small contribution of the parallel execution of
the kalman filters to the overall execution.

On the other hand, the WATERS challenge application, represented in Figure 13b, is composed of seven ker-
nels, four of them executed in the GPU, i.e., localization, sensor fusion (SFM), object detection, and
lane detection. As described in Section 6.2, the original model has been modified by replacing the tasks ded-
icated to data movements between the host and the accelerator with runnables enclosed in the same task
executing the computation in the accelerator (as described in Figure 14). The computation runnables have
been further augmented with the accelerator parallelism custom property, and so the code synthesizer auto-
matically transforms them into t arget directives with the proper map clauses. These target regions are then
offloaded to the accelerator, and data copies are internally managed by the OpenMP framework (i.e., com-
piler and runtime systems). The benefits in performance obtained with the additional custom properties and
augmented code synthesizer are shown in Table 2. The baseline for computing the speedup corresponds to
the model without the proposed custom properties, and hence executed in the host. The results show a 6.21x
speedup when considering only the parallelized kernels, and a 4.83x if we take into account the end-to-end
execution time of the application.

Configuration Parallelized kernels | Full application
ODAS 2th 1.88 1.18
4th 2.62 1.22
WATERS | 4th & GPU 6.21 4.83

Table 2: Performance evaluation in terms of speedup.
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7 Conclusions

Our analyses, started in D2.1[14] and further developed for this deliverable, conclude that state-of-the-art MDE
standards, like AUTOSAR and AMALTHEA, are compatible with parallel programming models, like OpenMP, con-
sidering the execution model, the memory model, and the minimal support for non-functional requirements.
Our proposed changes in the DSML, together with the augmented code synthesis tool that automatically trans-
forms the enhanced model into parallel code, and a set of correctness analysis techniques applied at the level
of the generated source code, allow maintaining the correct-by-construction paradigm of MDE technologies
while exploiting parallel heterogeneous processor architectures.

Based on the analysis performed, this work provides an initial set of enhancements to exploit both host and
accelerator parallelism using OpenMP. Our evaluation shows promising results in terms of programmability,
portability, performance and correctness. As a result, we are working in further extensions, including the pos-
sibility of defining different implementations for a given runnable via a new variant property. This new feature,
intended for enhancing the portability of the model, would allow to chose which version of the runnable to
run based on the architecture underneath.
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List of Acronyms

CPU  Central Processing Unit
D  Deliverable
DAG Direct Acyclic Graph
DSML Domain Specific Modeling Language
FPGA  Field-Programmable Gate Array
GPU  Graphics Processing Unit
IR Internal Representation
HPC High-Performance Computing
MDE Model-Driven Engineering
MS  Milestone
ODAS  Obstacle Detection Avoidance System
OS  Operating System
PPM Parallel Programming Model
SLG  Synthetic Load Generator
T Task
TDG  Task Dependency Graph
WP  Work Package
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9 Appendix

This section includes the implementation details of the software developed for fulfilling MS2 in WP2.

9.1 AMALTHEA SLG

Figure 17 shows the extensions implemented in the Amalthea SLG for generating OpenMP code targeting per-
formance and resiliency, based on an Amalthea model augmented with the extensions presented in Section 2,
for performance, and also those presented in D3.2 for resiliency.

1 private boolean processRunnable (

2 Runnable runnable, List <String > statements,

3 List <Label > externLabels, StringBuilder puDefinition) {

4

5 boolean hasParallelRunnables = false;

6 int duplicates = 0;

7

8 if (runnable.getCustomProperties().containsKey("redundancy")) {

9 Value V = runnable.getCustomProperties () .get("redundancy");

10 EStructuralFeature feature = V.eClass().getEStructuralFeatures().get(0);
1 duplicates = (int) V.eGet(feature);

12 }

13

14 if (runnable.getCustomProperties().containsKey("accelerator_parallelism")) {
15 Value V = runnable.getCustomProperties () .get("accelerator_parallelism");
16 EStructuralFeature feature = V.eClass().getEStructuralFeatures().get(0);
17 boolean acc_par = (boolean) V.eGet(feature);

18 if(acc_par) {

19 Arraylist <Label> LabelsOut = new Arraylist <Label >();

20 Arraylist <Label > Labelsln = new Arraylist <Label >();

21 Arraylist <Label> LabelsInOut = new ArraylList <Label >();

22 for (ActivityGraphltem runitem : runnable.getActivityGraph ().getltems()) {
23 if(runitem instanceof LabelAccess) {

24 LabelAccess la = (LabelAccess) runitem;

25 Label label = la.getData();

26 if(!externLabels.contains(label)) {

27 externLabels.add(label);

28 }

29 if(la.getAccess () == LabelAccessEnum .READ) {

30 if (!LabelsOut.contains(label) && !Labelsin.contains(label))
31 Labelsln.add(label);

32 }

33 if(la.getAccess () == LabelAccessEnum.WRITE) {

34 if (! LabelsOut.contains (label))

35 LabelsOut.add(label);

36 }

37 }

38 }

39

40 Arraylist <Label > ToRemove = new Arraylist <Label >();

P for (Label inLabel: Labelsin) {

42 if(LabelsOut.contains(inLabel)) {

43 ToRemove.add(inLabel);

44 LabelsinOut.add(inLabel);

45 }

46 }

47 Labelslin.removeAll (ToRemove) ;

48 LabelsOut.removeAll (ToRemove) ;

49 String isOpenMP= "\n#if defined(_OPENMP)";

50 String iSOMPSS= "\n#elif defined(_OMPSS)";

51 String OpenMPPragma = "\n_#pragma_omp, target";

52 String OmpssPragma= "\n_#pragma _oss,_target";
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1 if(Labelsln.size ()!=0) {

2 String depends = "", maps="";

3 depends+="_depend (in:";

4 maps+="_map (to:";

5 for (Label inLabel: Labelsin) {

6 depends+=inLabel.getName () +",";

7 maps+=inLabel .getName() + "[0:"+ AmaltheaModelUtils. getLabelArraySize (
inLabel)+"],";

8 }

9 depends= depends.substring (0, depends.length () —1);

10 maps= maps.substring (0, maps.length () —1);

n depends+=")";

12 maps+=")";

13 OpenMPPragma= OpenMPPragma + depends;

14 OmpssPragma= OmpssPragma + depends + maps;

15 }

16 if(LabelsOut.size () !=0) {

17 String depends = "", maps="";

18 depends+="_depend (out:";

19 maps+="_map (from:";

20 for (Label outLabel: LabelsOut) {

21 depends+=outLabel.getName () +",";

22 maps+=outLabel.getName() + "[0:"+ AmaltheaModelUtils.getLabelArraySize
(outLabel)+"],";

23 }

24 depends= depends.substring (0, depends.length () —1);

25 maps= maps.substring (0, maps.length () —1);

26 depends+=")";

27 maps+=")";

28 OpenMPPragma= OpenMPPragma + depends;

29 OmpssPragma= OmpssPragma + depends + maps;

30 }

31 if(LabelsInOut.size () !=0) {

32 String depends = "", maps="";

33 depends+="_depend (inout:";

34 maps+="_map (tofrom:";

35 for (Label inoutLabel: LabelsinOut) {

36 depends+=inoutLabel.getName() +",";

37 maps+=inoutLabel .getName() + "[0:"+ AmaltheaModelUtils.
getLabelArraySize (inoutLabel)+"],";

38 }

39 depends= depends.substring (0, depends.length () —1);

40 maps= maps.substring (0, maps.length () —1);

41 depends+=")";

42 maps+=")";

43 OpenMPPragma= OpenMPPragma + depends;

44 OmpssPragma= OmpssPragma + depends + maps;

45 }

46 OmpssPragma +="_copy_deps";

47 statements.add (isOpenMP + OpenMPPragma + isOMPSS + OmpssPragma + "\n#endif");

48 }

49 }

50 if (runnable.getCustomProperties().containsKey("host_parallelism")) {

51 Value V = runnable.getCustomProperties().get("host_parallelism");

52 EStructuralFeature feature = V.eClass().getEStructuralFeatures().get(0);

53 Boolean host_par = (Boolean) V.eGet(feature);

54 if(host_par) f{

55 Arraylist <Label> LabelsOut = new ArraylList <Label >();

56 Arraylist <Label > Labelsln = new Arraylist <Label >();

57 Arraylist <Label> LabelsInOut = new ArraylList <Label >();

58 for (ActivityGraphltem runitem : runnable.getActivityGraph () .getltems())

59 if(runitem instanceof LabelAccess) {

60 LabelAccess la = (LabelAccess) runitem;

61 Label label = la.getData();

62 if(!externLabels.contains (label))

63 externLabels.add(label);

64 if(la.getAccess() == LabelAccessEnum .READ) {

65 if (!LabelsOut.contains(label) && !Labelsln.contains(label))

66 Labelsln.add(label);

67 }
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1 if(la.getAccess () == LabelAccessEnum.WRITE) {
2 if(!LabelsOut.contains (label))

3 LabelsOut.add(label) ;

4 }

5 }

6 }

7 Arraylist <Label > ToRemove = new ArraylList <Label >();

8 for (Label inLabel: Labelsin) {

9 if(LabelsOut.contains(inLabel)) {

10 ToRemove.add(inLabel);

1 LabelsinOut.add(inLabel);

12 }

13 }

14 Labelsin.removeAll (ToRemove) ;

15 LabelsOut.removeAll (ToRemove) ;

16 String isOpenMP= "\n#if_defined (_OPENMP)";

17 String isSOMPSS= "\n#elif defined(_OMPSS)";

18 String OpenMPPragma = "\n_#pragma_omp_task";

19 String OmpssPragma= "\n_#pragma,_oss_task";

20 String depends="";

21 if(Labelsln.size () '!'=0) {

22 depends+="_depend (in:";

23 for (Label inLabel: Labelsin) {

24 depends+=inLabel.getName () +",";

25 }

26 depends= depends.substring (0, depends.length () —1);
27 depends+=")";

28 }

29 if(LabelsOut.size () !=0) {

30 depends+="_depend (out:";

31 for (Label outLabel: LabelsOut) {

32 depends+=outLabel.getName() + ",";

33 }

34 depends= depends.substring (0, depends.length () —1);
35 depends+=")";

36 }

37 if(LabelsIinOut.size ()!=0) {

38 depends+="_depend (inout:";

39 for (Label inoutLabel: LabelsinOut) {

40 depends+=inoutLabel.getName() + ",";

/1 }

42 depends= depends.substring (0, depends.length () —1);
43 depends+=")";

44 }

45 if(duplicates >0)

46 depends+=("_redundancy ("+duplicates+")");

47 OpenMPPragma+= depends;

48 OmpssPragma+=depends;

49 statements.add (isOpenMP + OpenMPPragma + isOMPSS + OmpssPragma + "\n#endif");
50 hasParallelRunnables = true;

51 }

52 }

53 statements.add("run_" + runnable.getName() + "(\"" + puDefinition.toString() + "\");")
54 return hasParallelRunnables;

55 }

Figure 17: Modifications for supporting parallelism in the APP4AMC SLG.
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9.2 Python script for Extrae/TDG performance analysis

Figure 21 shows script that parses a Extrae trace and extracts information about the performance of each
OpenMP tasks to later add it to the TDG generated by the Mercurium compiler.

1 import re

2 import collections

3 import sys

4 import copy

5

6 if(len(sys.argv)) < 4: #usage: ./script =«.prv «_tdg.c =. pcf

7 quit ()

8 prvFile = sys.argv[1] #«. prv: execution data measured by Extrae

9 tdgFile = sys.argv[2] #+«_tdg.c TDG structure generated by Mercurium
10 pcfFile = sys.argv[3] #+. pcf: list of Extrae configuration flags

1 if (not(prvFile.endswith(".prv")) or not(tdgFile.endswith("tdg.c")) or not(pcfFile.
endswith (".pcf"))):

12 print ("\n_Wrong,_input _files._ Expecting, _in_order: x.prv_*_tdg.c_*.pcf._Exiting._\n")

13 quit ()

15 #Parse the =«.prv file (The prv format is described in D6.2)
16 #we are interested in events between task execution begin and task execution end

17 lines = []
18 with open(prvFile) as prvinput:
19 lines = prvinput.readlines ()

20 papiEventLines = ""
with open(pcfFile) as pcflnput:
22 papiEventLines = pcflnput.read()

N

24 #the flag for the hardware event counters starts always with 42

25 papiEventsFlagList = re.findall(r"42[0-9]{6}’, papiEventLines)

26 #exampe for papi event flags , from the pcf

27 #7 42000050 PAPI_TOT_INS [Instr completed]

28 #7 42000059 PAPI_TOT_CYC [Total cycles]

29 #7 42000000 PAPI_L1_DCM [L1D cache misses]

30 #7 42000002 PAPI_L2_DCM [L2D cache misses]

3N #7 42000008 PAPI_L3_TCM [L3 cache misses]

32 #papiEventFlags = [’42000050 ", ‘42000059 °, '42000000°, ’'42000002°, 42000008 ]

33 papiEventFlags = papiEventsFlaglList

34 capturingEventTimeFlag = 760000023’ #task execution flag

35 capturingEventldFlag = 60000028’ #task id flag

3 captureEventFlags = [capturingEventldFlag , capturingEventTimeFlag] + papiEventFlags

37 captureEventValues = {} #values for the flags in captureEventFlags , but mapped per thread

38 numOfPapiEvents = len(papiEventFlags)

39 numOfValuesToCapture = len(captureEventFlags) #event id, event time, all papi event
counters

40 captureEventlidindx = O #for the ease of reading

captureEventTimelndx = 1

S

42 allCapturesCollection = [] #the final result of parsing extrae outputs
43

44 def initCountersifNeeded (captureEventValues, thrid):

45 if(thrid not in captureEventValues):

46 captureEventValues[thrid] = [0] * numOfValuesToCapture

48 def resetCounters(captureEventValues, thrid):

49 if(thrid in captureEventValues):

50 captureEventValues[thrid] = [0] * numOfValuesToCapture

51 else:

52 print ("Error! Counters_should_already_be_initialized for _this_thread, before_reset.
")

53 quit ()
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#PAP| counters show the sum of all event counts since the last event execution
def incrementCounterValuesForEventinThread (captureEventValues, thrid, entry):
papiEventindx = O
while papiEventlindx < len(papiEventFlags):
papiEvent = papiEventFlags[papiEventindx]
#papiEventindx is the same index for the |Ilist of flags as for the Ilist of values
indx = 0
while(indx < len(entry)):
#the value of the papi counter is located right after the papi event id in the
prv entry :
if(papiEvent == entry[indx]):
#the rest have to be added up because they measure events since the last
measurement
captureEventValues[thrid][2 + papiEventindx] = captureEventValues[thrid][2 +
papiEventindx] + int(entry[indx+1])
break; #catch only in first papi event val, that is in Next Evt Val
indx += 1
papiEventindx += 1

def isCaptureEventStart(entry):
if((capturingEventidFlag in entry) and (capturingEventTimeFlag in entry)):
return True

else:
return False
def isCaptureEventEnd(entry):
if( (capturingEventTimeFlag in entry) and not (capturingEventldFlag in entry) and (
entry[entry.index(capturingEventTimeFlag)+1] == '0’) ):
return True
else:

return False

#capture start event (60000023)
def startEventCapture(captureEventValues, thrid, entry):
#the captureEventValues is a running counter of all values

#but shouldn 't capture events when not inside the execution of a task

if((thrld in captureEventValues) and (captureEventValues[thrid][0] != 0) and (
captureEventValues[thrid][1] !'= 0)):
print ("Ending _of_previous_capture_event_has,_not_reset_the_counters._Aborting...")
quit ()

resetCounters(captureEventValues, thrid)

captureEventValues[thrid ][ captureEventldindx] = entry[entry.index(capturingEventldFlag
) + 1]

captureEventValues|[thrid ][ captureEventTimelndx] = int(entry[entry.index(
capturingEventTimeFlag) — 1])

def endEventCapture(captureEventValues, thrid, entry):

#do nothing for captureEventValues [thrid J[O0]

captureEventValues[thrid ][ captureEventTimelndx] = int(entry[entry.index(
capturingEventTimeFlag) — 1]) — captureEventValues[thrid][captureEventTimelndx] #
calculate execution time

incrementCounterValuesForEventinThread (captureEventValues, thrid, entry)

allCapturesCollection .append(captureEventValues[thrid])

#finished mapping counters on this thread in this timeframe to this capture event

resetCounters (captureEventValues, thrid)

#add up all PAPI counters during the execution time of an event

def processOtherEvents(captureEventValues, thrid, entry):
incrementCounterValuesForEventinThread (captureEventValues, thrid, entry)
entry = []
for | in lines:
entry = |.strip().split(’:")
thrid = int(entry[4])
initCountersifNeeded (captureEventValues, thrid)
if(isCaptureEventStart(entry)):
startEventCapture (captureEventValues, thrid, entry)
elif(isCaptureEventEnd (entry)):
endEventCapture (captureEventValues, thrid, entry)
else:
processOtherEvents (captureEventValues, thrid, entry)
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1 #parse the tdg.c file , to search for data to modify with the execution times
2 tdglLines = '’
3 tdgStruct =77
4 with open(tdgFile) as tdglnput:
5 tdglLines = tdglnput.read()
6 nameOfExecutionTime = "execution_time"
7 #PAPI flags and values [list will have identically ordered elements
8 nameOfPapiFlags = "papitot_counter_flags"
9 nameOfPapiVals = "papitot_counter_vals"
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#small cleanup of the tdg values (needed for execution) that we don’'t need:
def isMemberToRemove (member) :
if(("task_counter" in member) or ("task_counter_end" in member) or ("runtime_counter"
in member) or ("taskpart_counter" in member) or ("map" in member) or ("cnt" in
member) or ("next_waiting_tdg" in member)):
return True
else:
return False

#parse the tdg structure and get the content of the body of the tdg struct declaration

matchTdgStructDecl = re.search(r’struct[\s]+gomp_tdg[\s]*\{ ([\s\S]*?)\}[\s]*;’, tdglines)

tdgStructDeclBody = matchTdgStructDecl.group (1)

tdgStructDeclBodyNew = copy.copy(tdgStructDeclBody) + "\n\n\t_int_" + nameOfExecutionTime
+ "; A\n\t_int_" + nameOfPapiVals + "[" + str(numOfPapiEvents) + "];_\n\n"

#assuming that member declarations are in separate lines
tdgStructDeclBodyNewlLines = tdgStructDeclBodyNew. splitlines ()
for member in tdgStructDeclBodyNew.splitlines ():
if(isMemberToRemove (member) ) :
tdgStructDeclBodyNewlines.remove (member)

tdgStructDeclBodyNew = "\n’.join(tdgStructDeclBodyNewlLines)
tdgStructDeclWhole = matchTdgStructDecl.group(0)

tdgStructDeclWholeNew = tdgStructDeclWhole.replace(tdgStructDeclBody ,
tdgStructDeclBodyNew)

tdgStructDeclWholeNewPlusPapiFlagDecl = tdgStructDeclWholeNew + "\n\n" + "int " +
nameOfPapiFlags + "[" + str(numOfPapiEvents) + "] _=_{" + ’,’ .join(papiEventFlags) + "
}io\n\n"

tdgOutputLines = "\n" + tdgStructDeclWholeNewPlusPapiFlagDecl + "\n"

listAlITdgStructs = re.findall( \
r’struct [\s]+gomp_tdg[\s]*gomp_tdg_[0-9]1+\[.*2\] [\s]*=[\s]*\{[\s\S]*2\}[\s]*;",
tdglLines)
numOfTdgs = len(listAllTdgStructs)
for tdgStructinList in listAllITdgStructs:
#get the content of the body of the tdg struct definition
matchTdgStruct = re.search(\
r’struct [\s]+gomp_tdg[\s]+gomp_tdg_[0-9]1+\[.*2\] [\s]I*=[\sI*\{ ([\s\S1*2)\}[\s]«;",
tdgStructinList)
tdgStruct = matchTdgStruct.group (1)
#parse it into dictionary with keys as task ids and values as the Ilist of vars
describing that node

oldTdg = {}
tdgNode = []
tdg = {}

for matchTdgNode in re.finditer (r’\{(.*?)\}’, tdgStruct):
tdgNode = matchTdgNode. group (1) .split(’,”)
matchld = re.search(r’\.id.x2(\d+)’, tdgNode[O]) #id is the first member of the tdg
node struct
tdgld = int(matchld.group (1))
oldTdg[tdgld] = tdgNode
#remove: task , task_counter , task_counter_end , runtime_counter , taskpart_counter ,
cnt, map
tdg[tdgld] = copy.copy(tdgNode)
for member in tdgNode:
if(isMemberToRemove (member) ) :
tdg[tdgld ].remove (member)




D2.2 - Parallel abstraction and performance-aware component AMrER

Version 1.0
1 for capture in allCapturesCollection:
2 if(capture[captureEventldindx].strip () == str(tdgld)):
3 tdg[tdgld].append("." + nameOfExecutionTime + " _=_" + str(capture]|
captureEventTimelndx]))
4 tdg[tdgld ].append("." + nameOfPapiVals + " _=_{" + ’,’.join(list(map(str,

29

capture[2:]))) + "}")

5
6 #bring it all together into output tdg.c file
7 tdgForWrite = []

8 tdgCombinedLines = tdgStructinList

9 for node in tdg:

10 if node not in oldTdg:

1l print ("0ld_and,_new_TDGs_must,have_same_nodes!")

12 quit ()

13 tdgCombinedLines = tdgCombinedLines.replace("{" + ’,’.join(oldTdg[node]) + "}", "{"

+ 7,7’ .join(tdg[node]) + "}")

15 #parses dependencies :
16 matchTdgStructDependins = re.findall (r’unsigned.*?gomp_tdg_ins[\s\S]x?;’, tdglLines)
17 matchTdgStructDependOuts = re.findall (r’unsigned.*?gomp_tdg_outs[\s\S]x?;’, tdglLines)

18 tdgLinesDependinsAndOuts = ‘\n’ + ’\n’.join(matchTdgStructDependins) + ’\n’ + '\n’.
join (matchTdgStructDependOuts) + ’\n’

20 tdgOutputLines = tdgOutputLines + "\n\n" + tdgCombinedLines

21 tdgOutputLines = re.sub(r’struct[\s]*gomp_tdg\s’, ’struct_gomp_tdg_node ',
tdgOutputLines)

22 tdgOutputLines = re.sub(r’struct[\s]*gomp_tdg\{’, ’struct_gomp_tdg_node{’,
tdgOutputLines)

23 tdgOutputLines = re.sub(r’struct[\s]*gomp_tdg;’, ’struct,_gomp_tdg_node;’,

tdgOutputLines)
24 tdgOutputLines = tdgOutputLines + "\n’ + tdglLinesDependinsAndOuts
25
26 indx = tdgFile.index("tdg.c")
27 tdgOutputFile = tdgFile[:indx] + "simple_output_" + tdgFile[indx:]
28 tdgOutput = open(tdgOutputFile , "w+t")
29 tdgOutput.write (tdgOutputlLines)
30 tdgOutput.close ()

Figure 21: Python script for performance processing of Extrae traces and TDG augmentation.
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9.3 LLVM compiler for OpenMP correctness

Figure 33 shows the analysis implemented in the LLVM compiler targeting correctness.

1 for (auto &SelectedTask : Fl.TaskFuncinfo.PostOrder) {

2 bool AutoDeps = true;

3

4 setPreSync(SelectedTask , SyncPoints, Ol, Fl.TaskFuncinfo.PostOrder);

5 setPostSync(SelectedTask , SyncPoints, Ol, Fl.TaskFuncIinfo.PostOrder);

6 setConcurrentTasks (SelectedTask, OI, Fl.TaskFunclnfo);

7 setConcurrentSequential (SelectedTask, Ol, Fl.TaskFuncinfo, SyncPoints, FI.TaskFunclinfo
.PostOrder) ;

8

9 // Print concurrent code blocks

10 printTaskConcurrentBlocks (SelectedTask) ;

1

12 SmallVector <std :: pair <Value *, DSAValue>, 10> ScopedVariables;

13

14 // Clean scope of variables

15 for (Value *Var : SelectedTask.DSAlInfo.Firstprivate)

16 ScopedVariables.push_back(std:: pair<Value *, DSAValue >(Var, FIRSTPRIVATE));

17 SelectedTask.DSAInfo. Firstprivate .clear ();

19 for (Value *Var : SelectedTask.DSAlInfo.Private)

20 ScopedVariables.push_back(std:: pair<Value *, DSAValue >(Var, PRIVATE));

21 SelectedTask .DSAInfo.Private.clear () ;

22

23 for (Value *Var : SelectedTask.DSAlInfo.Shared)

24 ScopedVariables.push_back(std:: pair<Value *, DSAValue >(Var, SHARED));

25 SelectedTask .DSAInfo.Shared.clear () ;

26

27 // Requires so global variables used in the task are added as variables to analyze ,

even they are not detected by Clang
28 for (auto &Global : F.getParent()—>getGlobalList()){

29 Value *Variable = dyn_cast<Value>(&Global);

30

31 for (User *U : Variable —>users()){

32 SmallVector<iInstruction *, 4> CallList;

33 SmallPtrSet <Function *, 10> AnalyzedFunctions;

34

35 if(Instruction *I = dyn_cast<Instruction >(U)){

36 obtainCallsinside (1, SelectedTask.Entry, SelectedTask.Exit ,Ol,
AnalyzedFunctions, CallList);

37 }

38 elsef

39 for (User *UNew : U—>users()) {

40 if(Instruction *I = dyn_cast<Instruction >(UNew)) {

4 obtainCallsinside (1, SelectedTask.Entry, SelectedTask.Exit, OIl,

AnalyzedFunctions, CallList);

42 }

43 }

44 }

45 // If there is a call, that means that the variable is used inside the task

46 if(CallList.size()){

47 bool exists= false;

48 for (auto AlreadyVariable : ScopedVariables) {

49 if(AlreadyVariable. first==Variable){

50 exists=true;

51 break;

52 }

53 }

54 if(!exists)

55 ScopedVariables.push_back(std:: pair<Value *, DSAValue >(Variable , SHARED));

56 break;

57 }

58 }

59 }
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1 // Count scope of variables
2 int numUnknown = O, numShared = O, numFirstPrivate = 0O, numPrivate = O;
3 for (auto Variable : ScopedVariables) {
4 Value *Var = Variable. first;
5 dbgs () << "\n\033[lmAnalyzing_variable: \033[0m";
6 Var—>printAsOperand (dbgs (), false);
7 dbgs () << "\n";
8
9 // Declare important attributes for the task, to be filled and used in the
algorithm
10 bool AutoDepsActivated = false;
1 DSAValue OriginalDSA = Variable.second;
12 DSAValue CorrectedDSA = UNDEF;
13 VarUse UsedInConcurrent = NOT_USED;
14 VarUse UsedInTask = NOT_USED;
15 bool IsGlobalVariable = false;
16 bool IsComposited;
17
18 // Find if the variable is composited
19 if (Var—>getType ()—>isPointerTy())
20 IsComposited = dyn_cast<CompositeType >(Var—>getType () —>getPointerElementType ());
21 else
22 IsComposited = false;
23
24 // Find if the variable is a Pointer
25 bool IsPointer;
26 if (Var—>getType ()—>isPointerTy ())
27 IsPointer = Var—>getType ()—>getContainedType (0)—>isPointerTy () ;
28
29 // Vector for storing variable uses in concurrent blocks , inside and outside tasks
30 SmallVector <ValueAccess, 4> UsedInTaskValues;
31 SmallVector <ValueAccess, 4> UsedInConcurrentValues;
32
33 // Dummy ValueAccess , temporal fix
34 ValueAccess dummy;
35
36 for (User *U : Var—>users()) {
37 if (Instruction *I1 = dyn_cast<Instruction >(U)) {
38 SmallPtrSet <Function *, 10> AnalyzedFunctions;
39 int TaskContainsCall=UselsIinExternalCall(l, SelectedTask.Entry, SelectedTask.
Exit, Ol, AnalyzedFunctions);
40
4 // Use is inside the task
42 if ((Ol.dominates(SelectedTask.Entry, 1) && !Ol.dominates(SelectedTask.Exit,
1)) || TaskContainsCall) {
43 AnalyzedFunctions.clear ();
44 valuelninstruction (I, Var, UsedInTask, false, &AnalyzedFunctions ,
UsedInTaskValues, true, dummy, BAA, NONE, true);
45 }
46 for (ConcurrentBlock &Block : SelectedTask.ConcurrentBlocks) {
47 AnalyzedFunctions.clear () ;
48 bool TaskContainsCall=UselslinExternalCall(l, Block.Entry, Block.Exit, OI,
AnalyzedFunctions);
49
50 // Use is inside a concurrent block
51 if ((Ol.dominates(Block.Entry, 1) && !Ol.dominates(Block.Exit, 1)) ||
52 | == Block.Entry || | == Block.Exit || TaskContainsCall) f{
53 AnalyzedFunctions.clear ();
54 int previousSize = UsedInConcurrentValues.size ();
55 VarUse PreviousUsedInConcurrent = UsedlnConcurrent;
56 valuelninstruction (I, Var, UsedInConcurrent, false, &AnalyzedFunctions,
UsedInConcurrentValues , true, dummy, BAA, NONE, true);
57 int numAdditions= UsedInConcurrentValues.size () — previousSize;
58 // Check if the use was inside a task or not
59 if(Block.Entry —>getFunction () == |—>getFunction()){
60 for (auto ThisTask : Fl.TaskFuncinfo.PostOrder) {
61 if ((Ol.dominates(ThisTask.Entry, 1) && !Ol.dominates(ThisTask.
Exit, 1))) {
62 // Check if exists a taskdependency , if it exists we remove the
use since s no concurrent anymore
63 if(isPotentiallyReachable (SelectedTask.Exit, ThisTask.Entry)
&& !existsTaskDependency (ThisTask, SelectedTask)){
64 UsedInConcurrentValues.back().ConcurrentUselnTask = true;
65 break;
66 }
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1 elsef
2 UsedInConcurrentValues.pop_back () ;
3 break;
4 }
5 }
6 }
7 }
8 else{
9 // Obtain a vector of all calls inside the concurrent block
10 SmallVector<Instruction *, 4> CallList;
1 AnalyzedFunctions.clear () ;
12 obtainCallsinside (I, Block.Entry, Block.Exit , Ol, AnalyzedFunctions
, CallList);
13 // See if it exists a call in the vector that is not inside in a task
14 bool AlllnsideTask=true;
15 SmallVector <TaskIinfo ,4> TaskWithCall;
16 for(Instruction *Call : CallList){
17 bool InsideTask=false;
18 for (auto ThisTask : Fl.TaskFunclinfo.PostOrder) {
19 if ((Ol.dominates(ThisTask.Entry, Call) &% !Ol.dominates(
ThisTask.Exit, Call))){
20 TaskWithCall.push_back(ThisTask);
21 InsideTask=true;
22 break;
23 }
24 }
25
26 if(!InsideTask){
27 AlllnsideTask=false;
28 break;
29 }
30 }
31 // If all are in tasks , check if all the tasks are syncronized with
the main
32 if(AlllnsideTask){
33 bool AllSynchronized= true;
34 for( auto ThisTask: TaskWithCall){
35 if (! existsTaskDependency (ThisTask, SelectedTask)){
36 AllSynchronized=false;
37 break;
38 }
39 }
40 // If they are syncronized , erase the last values added, else
mark ConcurrentUselnTask as true
2 if(AllSynchronized) {
42 // Restore
43 UsedInConcurrent =PreviousUsedInConcurrent;
44 for(int i=0; i< numAdditions; i++)
45 UsedInConcurrentValues.pop_back () ;
46 }
47 elsef
48 for(int i=0; i< numAdditions; i++)
49 UsedInConcurrentValues[UsedInConcurrentValues.size ()—1—i].
ConcurrentUselnTask=true;
50 }
51 }
52 }
53 }
54 }
55 } else {
56 // In case the wuse is not an instruction , check for its uses again
57 for (User *UNew : U—>users()) {
58 if (Instruction *I = dyn_cast<Instruction >(UNew)) {
59 SmallPtrSet <Function *, 10> AnalyzedFunctions;
60 int TaskContainsCall=UselsIinExternalCall(l, SelectedTask.Entry,
SelectedTask.Exit, Ol, AnalyzedFunctions);
61
62 if ((Ol.dominates(SelectedTask.Entry, 1) && !Ol.dominates(SelectedTask.
Exit, 1)) || TaskContainsCall) {
63 AnalyzedFunctions.clear ();
64 valuelninstruction(l, U, UsedInTask, false, &AnalyzedFunctions,
UsedInTaskValues, true, dummy, BAA, NONE, true);
65 }
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1 for (ConcurrentBlock &Block : SelectedTask.ConcurrentBlocks) {
2 AnalyzedFunctions.clear () ;
3 int TaskContainsCall=UselsIinExternalCall(l, Block.Entry, Block.Exit
,Ol, AnalyzedFunctions);
4
5 // Use is inside a concurrent block
6 if ((Ol.dominates(Block.Entry, 1) && !Ol.dominates(Block.Exit, 1))
|| I == Block.Entry || | == Block.Exit || TaskContainsCall) {
AnalyzedFunctions.clear ();
8 int previousSize = UsedlnConcurrentValues.size () ;
9 VarUse PreviousUsedInConcurrent = UsedInConcurrent;
10 valuelnlnstruction(l, U, UsedlnConcurrent, false, &
AnalyzedFunctions , UsedInConcurrentValues, true, dummy, BAA,
NONE, true);
1
12 int numAdditions= UsedInConcurrentValues.size () — previousSize;
13 // Check if the use was inside a task or not
14 if(Block.Entry —>getFunction () == |I—>getFunction ()){
15 for (auto ThisTask : Fl.TaskFuncinfo.PostOrder) {
16 if ((Ol.dominates(ThisTask.Entry, 1) && !Ol.dominates(
ThisTask.Exit, 1))) {
17 // Check if exists a taskdependency , if it exists we
remove the use since is no concurrent anymore
18 if(isPotentiallyReachable(SelectedTask.Exit, ThisTask.
Entry) && !existsTaskDependency(ThisTask,
SelectedTask)){
19 UsedInConcurrentValues.back () .ConcurrentUselnTask =
true;
20 break;
21 }
22 elsef
23 UsedInConcurrentValues.pop_back();
24 break;
25 }
26 }
27 }
28 }
29 elsef
30 // Obtain a vector of all calls inside the concurrent block
31 SmallVector <Instruction *, 4> CalllList;
32 AnalyzedFunctions.clear () ;
33 obtainCallsinside (1, Block.Entry, Block.Exit ,Ol,
AnalyzedFunctions, CallList);
34 // See if it exists a call in the vector that is not inside in
a task
35 bool AllinsideTask=true;
36 SmallVector <Tasklnfo ,4> TaskWithCall;
37 for(Instruction *Call : CallList){
38 bool InsideTask=false;
39 for (auto ThisTask : Fl.TaskFunclnfo.PostOrder) {
40 if ((Ol.dominates(ThisTask.Entry, Call) & !Ol.dominates
(ThisTask.Exit, Call))){
/1 TaskWithCall.push_back(ThisTask);
42 InsideTask=true;
43 break;
44 }
45 }
46 if(!InsideTask){
47 AlllnsideTask=false;
48 break;
49 }
50 }
51 // If all are in tasks , check if all the tasks are syncronized
with the main
52 if(AlllnsideTask){
53 bool AllSynchronized= true;
54 for( auto ThisTask: TaskWithCall){
55 if (! existsTaskDependency (ThisTask, SelectedTask)){
56 AllSynchronized=false ;
57 break;
58 }
59 }
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// If they are syncronized , erase the last values added,
else mark ConcurrentUselnTask as true
if(AllSynchronized){

// Restore
UsedInConcurrent =PreviousUsedInConcurrent;
for(int i=0; i< numAdditions; i++)
UsedInConcurrentValues.pop_back();
}
elsef
for(int i=0; i< numAdditions; i++)
UsedInConcurrentValues[UsedInConcurrentValues.size ()
—1—i].ConcurrentUselnTask=true;
}

// Auxiliar vectors for storing already visited functions and blocks
SmallPtrSet <BasicBlock *, 10> AnalizedBasicBlocks;
SmallPtrSet <Function *, 10> AnalyzedFunctions;

// Analyze the first use inside the task , to know if it is a read or a write
for (User *U : Var—>users()) {
if (!dyn_cast<lInstruction >(U)) {
// Case the use is not an instruction
for (auto &AccessToCheck : UsedInTaskValues) {
AnalizedBasicBlocks.clear ();
AnalyzedFunctions.clear () ;
analyzeFirstTaskUse (SelectedTask.Entry —>getParent (), U, SelectedTask.Exit,
SelectedTask.Entry, &AnalizedBasicBlocks , &AnalyzedFunctions ,
AccessToCheck , BAA, BEFORE_ENTRY, true);

// Case the use is an instruction
for (auto &AccessToCheck : UsedlInTaskValues) {
AnalizedBasicBlocks.clear () ;
AnalyzedFunctions.clear () ;
analyzeFirstTaskUse (SelectedTask.Entry —>getParent (), Var, SelectedTask.Exit,
SelectedTask.Entry, &AnalizedBasicBlocks , &AnalyzedFunctions, AccessToCheck,
BAA , BEFORE_ENTRY, true);

// Analyze variable is alive after next sync
for (Syncinfo *nextSync : SelectedTask.PostSyncs)
for (auto &AccessToCheck : UsedInTaskValues) {
AnalizedBasicBlocks .clear () ;
AnalyzedFunctions.clear ();
for (auto U : Var—>users())
if (!dyn_cast<lInstruction >(U))
analyzeFirstTaskUse (nextSync —>Sync—>getParent (), U, nullptr, nextSync—>
Sync, &AnalizedBasicBlocks , &AnalyzedFunctions, AccessToCheck, BAA,
AFTER_SYNC, true);
AnalizedBasicBlocks.clear () ;
AnalyzedFunctions.clear ();
analyzeFirstTaskUse (nextSync—>Sync—>getParent (), Var, nullptr, nextSync—>Sync
, &AnalizedBasicBlocks , &AnalyzedFunctions , AccessToCheck, BAA,
AFTER_SYNC, true);

// Analyze variable is alive after task exit
for (auto &SyncPoint : SelectedTask.PostSyncs) {
std :: vector <std :: vector<BasicBlock *>> FinalPaths;
getPaths (SelectedTask.Exit, SyncPoint—>Sync, FinalPaths, Ol, false);
for (auto &Node : FinalPaths) {
for (auto &BB : Node) {
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1 for (auto &AccessToCheck : UsedInTaskValues) {
2 AnalizedBasicBlocks.clear () ;
3 AnalyzedFunctions.clear () ;
4 for (auto U : Var—>users())
5 if (!dyn_cast<lInstruction >(U))
6 analyzeFirstTaskUse (BB, U, SyncPoint—>Sync, SelectedTask.Exit, &
AnalizedBasicBlocks , &AnalyzedFunctions, AccessToCheck, BAA,
AFTER_EXIT, false);
AnalizedBasicBlocks.clear () ;
8 AnalyzedFunctions.clear () ;
9 analyzeFirstTaskUse (BB, Var, SyncPoint—>Sync, SelectedTask.Exit, &
AnalizedBasicBlocks , &AnalyzedFunctions , AccessToCheck, BAA,
AFTER_EXIT, false);
10 }
1 }
12 }
13 }
14
15 // Check if the variable is global
16 if (dyn_cast<Globalvalue >(Var))
17 IsGlobalVariable = true;
18
19 SmallVector <ValueAccess , 4> DefinitiveUsedValues;
20 SmallVector <ValueAccess, 4> ProcessedValueAccess;
21 SmallVector <ValueAccess, 4> CopyUsedInTaskValues = UsedInTaskValues;
22 // Eliminate uses of same memory address
23 for (ValueAccess FirstTaskMemUse : UsedInTaskValues) {
24 bool Already = false;
25 for (auto &VA : ProcessedValueAccess) {
26 if ((FirstTaskMemUse.MemlLoc.Ptr != nullptr && VA.MemlLoc.Ptr !'= nullptr) && ((
FirstTaskMemUse .|l —>getFunction () !'= VA.l—>getFunction()) || (BAA.alias(
FirstTaskMemUse .MemLoc, VA.Memloc) != NoAlias))) {
27 Already = true;
28 break;
29 }
30 }
31 if (Already)
32 continue;
33 ProcessedValueAccess.push_back(FirstTaskMemUse) ;
34
35 SmallVector <VarUse, 4> Scopes;
36 Scopes.push_back(FirstTaskMemUse . Use);
37
38 for (ValueAccess SecondTaskMemUse : UsedInTaskValues) {
39 if (FirstTaskMemUse.l != SecondTaskMemUse.| && FirstTaskMemUse.MemlLoc. Ptr !=
nullptr && SecondTaskMemUse.MemLoc. Ptr != nullptr) {
40 if ((FirstTaskMemUse.l—>getFunction () != SecondTaskMemUse.|l—>getFunction ()
) || (BAA.alias (FirstTaskMemUse.MemLoc, SecondTaskMemUse.MemLoc) !=
NoAlias)) {
2 Scopes.push_back(SecondTaskMemUse . Use) ;
42 }
43 }
44 }
45
46 VarUse FinalUse = NOT_USED;
47 for (auto TypeOfUse : Scopes) {
48 if (TypeOfUse == UNKNOWN) {
49 FinalUse = TypeOfUse;
50 break;
51 }
52 if (FinalUse == NOT_USED || (TypeOfUse == WRITTEN && FinalUse == READED))
53 FinalUse = TypeOfUse;
54 }
55 FirstTaskMemUse .Use = FinalUse;
56 DefinitiveUsedValues.push_back(FirstTaskMemUse) ;
57 }
58
59 UsedInTaskValues = DefinitiveUsedValues;
60
61 DefinitiveUsedValues.clear () ;
62 ProcessedValueAccess. clear ();
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1 // Eliminate uses of same memory address

2 for (ValueAccess &FirstConcurrentMemUse : UsedlnConcurrentValues) {

3 bool Already = false;

4 for (auto &VA : ProcessedValueAccess) {

5 if ((FirstConcurrentMemUse .Memloc.Ptr != nullptr && VA.Memloc. Ptr

&& ((FirstConcurrentMemUse .l —>getFunction () != VA.l—>getFunction())
BAA. alias (FirstConcurrentMemUse .MemLoc, VA.MemlLoc) !'= NoAlias)))

6 Already = true;

7 break;

8 }

9 }

10 if (Already)

n continue;

12 ProcessedValueAccess. push_back(FirstConcurrentMemUse) ;

13

14 SmallVector <VarUse, 4> Scopes;

15 Scopes.push_back(FirstConcurrentMemUse . Use) ;

16 for (ValueAccess SecondConcurrentMemUse : UsedlnConcurrentValues)

17 if (FirstConcurrentMemUse.|l != SecondConcurrentMemUse. | &&

FirstConcurrentMemUse .MemlLoc. Ptr != nullptr && SecondConcurrentMemUse.
MemlLoc. Ptr != nullptr) {

18 if ((FirstConcurrentMemUse.l—>getFunction() != SecondConcurrentMemUse.|—>
getFunction()) || (BAA.alias (FirstConcurrentMemUse .MemLoc,
SecondConcurrentMemUse .MemLoc) != NoAlias)) {

19 Scopes.push_back(SecondConcurrentMemUse . Use) ;

20 // Required to know if there is a concurrent use outside the

we are eliminating it
21 if(FirstConcurrentMemUse.ConcurrentUselnTask == true &&
SecondConcurrentMemUse. ConcurrentUselnTask == false){

22 FirstConcurrentMemUse . ConcurrentUselnTask= false;

23 }

24 1

25 }

26 }

27

28 VarUse FinalUse = NOT_USED;

29 for (auto TypeOfUse : Scopes) {

30 if (TypeOfUse == UNKNOWN) {

31 FinalUse = TypeOfUse;

32 break;

33 }

34 if (FinalUse == NOT_USED || (TypeOfUse == WRITTEN && FinalUse == READED))

35 FinalUse = TypeOfUse;

36 }

37 FirstConcurrentMemUse .Use = FinalUse;

38 DefinitiveUsedValues.push_back(FirstConcurrentMemUse) ;

39 }

40 UsedInConcurrentValues = DefinitiveUsedValues;

41

42 // Analyze variables that satisfy the conditions

43 if (UsedInTask !'= UNKNOWN && UsedInTask != NOT_USED && UsedInConcurrent != UNKNOWN)

{

44 SmallVector <MemoryAccessDescription, 4> AllUses;

45 SmallVector <DSAValue, 4> DSA;

46

47 for (ValueAccess TaskMemUse : UsedInTaskValues) {

48 VarUse LocalUsedInTask = TaskMemUse.Use;

49 VarUse LocalUsedInConcurrent = NOT_USED;

50 VarUse FirstTaskUse = TaskMemUse. FirstTaskUse;

51 bool IsAliveAfterNextSync = TaskMemUse. IsAliveAfterNextSync;

52 bool Found = false;

53 for (ValueAccess ConcurrentMemUse : UsedlnConcurrentValues) {

54 if ((TaskMemUse.l—>getFunction () != ConcurrentMemUse.|l—>getFunction ())
BAA. alias (TaskMemUse .MemLoc, ConcurrentMemUse.MemlLoc) !=

55 Found = true;

56 LocalUsedInConcurrent = ConcurrentMemUse.Use;

57 AllUses .push_back ({ LocalUsedInTask , LocalUsedInConcurrent, FirstTaskUse

, IsAliveAfterNextSync , ConcurrentMemUse.ConcurrentUselnTask});

58 }

59 }
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1 if (!Found) {
2 AllUses . push_back ({ LocalUsedInTask , LocalUsedInConcurrent, FirstTaskUse,
IsAliveAfterNextSync , falsel});

3 }

4 }

5 for (auto ThisUse : AllUses) {

6 VarUse TaskUse = ThisUse.UsedInTask;

7 VarUse ConcurrentUse = ThisUse.UsedInConcurrent;

8 VarUse FirstinTask = ThisUse.FirstTaskUse;

9 bool IsAliveAfterNextSync = ThisUse.IsAliveAfterNextSync;

10 bool ConcurrentUselnTask = ThisUse.ConcurrentUselnTask;

1

12 if (ConcurrentUse == NOT_USED) {

13 if (TaskUse == READED)

14 DSA . push_back (SHARED_OR_FIRSTPRIVATE) ;

15 else if (TaskUse == WRITTEN) {

16 if (IsGlobalVariable || IsAliveAfterNextSync)

17 DSA . push_back (SHARED) ;

18 else if (FirstinTask == WRITTEN)

19 DSA . push_back (PRIVATE) ;

20 else if (FirstInTask == READED || FirstinTask == UNKNOWN)

21 DSA. push_back (SHARED_OR_FIRSTPRIVATE) ;

22 }

23 } else {

24 if (TaskUse == READED && ConcurrentUse == READED)

25 DSA. push_back (SHARED_OR_FIRSTPRIVATE) ;

26 else if (TaskUse == WRITTEN || ConcurrentUse == WRITTEN) {

27 // TODO: No Data Race (critical section)

28 if (AutoDeps) {

29 if (IsAliveAfterNextSync && !ConcurrentUselnTask)

30 DSA. push_back (UNDEF) ;

31 else if (! ConcurrentUselnTask) {

32 if (FirstinTask == WRITTEN)

33 DSA . push_back (RACEPRIVATE) ;

34 else

35 DSA. push_back (RACEFIRSTPRIVATE) ;

36 } else {

37 dbgs () << "Possible_race _condition_with_other_tasks, _running,
Autodeps_\n";

38 AutoDepsActivated=true;

39 DSA . push_back (SHARED) ;

40 }

P } else {

42 if (IsAliveAfterNextSync)

43 DSA. push_back (UNDEF) ;

44 else if (FirstinTask == WRITTEN)

45 DSA. push_back (RACEPRIVATE) ;

46 else

47 DSA. push_back (RACEFIRSTPRIVATE) ;

48 }

49 }

50 }

51 }

52

53 if (IsComposited) {

54 SmallVector <std :: pair <DSAValue, DSAValue>, 4> DSAPairs;

55

56 for (int i = 0; i < (int)DSA.size (); i++)

57 for (int j = i; j < (int)DSA.size (); j++)

58 DSAPairs.push_back ({DSA[i], DSA[j]1});

59

60 bool AllEqual = true;

61 bool AllRaces = true;

62 bool ExistsUndefined = false;

63 bool ConditionA = false;

64 bool ConditionB = true;

65 bool ConditionC = true;

66 bool ConditionC1 = true;

67 bool ConditionD = false;

68

69 for (auto Pair : DSAPairs) {

70 if (Pair.first != Pair.second)

71 AllEqual = false;
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1 if (Pair.first == UNDEF || Pair.second == UNDEF)

2 ExistsUndefined = true;

3

4 if (((Pair.first == RACEFIRSTPRIVATE || Pair.first == RACEPRIVATE) && Pair
.second == SHARED) || (((Pair.second == RACEFIRSTPRIVATE || Pair.
second == RACEPRIVATE) && Pair. first == SHARED)))

5 ConditionA = true;

6

7 if (!((Pair.first == SHARED_OR_FIRSTPRIVATE || Pair.first == SHARED) && (
Pair.second == SHARED_OR_FIRSTPRIVATE || Pair.second == SHARED)))

8 ConditionB = false;

9

10 if (!((Pair.first == RACEPRIVATE || Pair.first == PRIVATE) && (Pair.second
== RACEPRIVATE || Pair.second == PRIVATE)))

1 ConditionC = false;

12

13 if (!((Pair.first == RACEFIRSTPRIVATE || Pair.first == PRIVATE) && (Pair.
second == RACEFIRSTPRIVATE || Pair.second == PRIVATE)))

14 ConditionC1 = false;

15

16 if ((Pair.first == SHARED_OR_FIRSTPRIVATE && (Pair.second == RACEPRIVATE
|| Pair.second == RACEFIRSTPRIVATE || Pair.second == PRIVATE)) || (
Pair.second == SHARED_OR_FIRSTPRIVATE && (Pair.first == RACEPRIVATE
Pair.first == RACEFIRSTPRIVATE || Pair.first == PRIVATE)))

17 ConditionD = true;

18

19 if (!((Pair.first == RACEPRIVATE || Pair.first == RACEFIRSTPRIVATE) && (
Pair.second == RACEPRIVATE || Pair.second == RACEFIRSTPRIVATE)))

20 AllRaces = false;

21 }

22

23 if (AllEqual || DSA.size () == 1)

24 CorrectedDSA = DSA[O];

25 else if (ExistsUndefined || ConditionA)

26 CorrectedDSA = UNDEF;

27 else if (ConditionB)

28 CorrectedDSA = SHARED;

29 else if (ConditionC)

30 CorrectedDSA = PRIVATE;

31 else if (ConditionD || ConditionC1 || AllRaces)

32 CorrectedDSA = FIRSTPRIVATE;

33 else

34 assert(false && "Error: _DSA_not_found");

35 } else {

36 DSAValue FinalDSA = UNINITIALIZED;

37 for (auto ThisDSA : DSA) {

38 if (ThisDSA == UNDEF) {

39 FinalDSA = ThisDSA;

40 break;

41 }

42 if (ThisDSA == FIRSTPRIVATE || ThisDSA == RACEFIRSTPRIVATE)

43 FinalDSA = ThisDSA;

44 if ((ThisDSA == PRIVATE || ThisDSA == RACEPRIVATE) && (FinalDSA ==
SHARED_OR_FIRSTPRIVATE || FinalDSA == SHARED || FinalDSA ==
UNINITIALIZED))

45 FinalDSA = ThisDSA;

46 if (ThisDSA == SHARED && (FinalDSA == UNINITIALIZED || FinalDSA ==
SHARED_OR_FIRSTPRIVATE))

47 FinalDSA = ThisDSA;

48 if (ThisDSA == SHARED_OR_FIRSTPRIVATE && (FinalDSA == UNINITIALIZED))

49 FinalDSA = ThisDSA;

50 }

51 CorrectedDSA = FinalDSA;

52 assert(CorrectedDSA != UNINITIALIZED && "Error:_DSA_not_found");

53 }

54

55 if (CorrectedDSA == RACEPRIVATE){

56 CorrectedDSA = PRIVATE;

57 dbgs () << "Race_condition_detected, ,can_not_be_solved with_autodeps,

privatizing_the_variable_\n";
58 }
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}

else if (CorrectedDSA ==

firstprivatizing,_the_variable_\n";

RACEFIRSTPRIVATE) {
dbgs () << "Race_condition_detected, ,can_not_be_solved with_autodeps,

CorrectedDSA = FIRSTPRIVATE;

}

bool isUnknown = false;

if

{

(CorrectedDSA == UNDEF)

if (UsedInTask != NOT_USED) {
isUnknown = true;
numUnknown ++;

}

CorrectedDSA = OriginalDSA;

} else if (CorrectedDSA == SHARED)
numShared ++;

else if (CorrectedDSA == PRIVATE)
numPrivate ++;

else if (CorrectedDSA == FIRSTPRIVATE)

numFirstPrivate ++;

else if (CorrectedDSA == SHARED_OR_FIRSTPRIVATE) {
if (IsComposited || IsPointer)

}

if

numShared ++;
} else {
numFirstPrivate ++;

}

(CorrectedDSA == SHARED)

SelectedTask .DSAInfo.Shared.insert (Var);

else if (CorrectedDSA == PRIVATE)

SelectedTask.DSAInfo. Private.insert (Var);

{

else if (CorrectedDSA == FIRSTPRIVATE)
SelectedTask.DSAInfo. Firstprivate .insert(Var);
else if (CorrectedDSA == SHARED_OR_FIRSTPRIVATE) {
if (IsComposited || IsPointer)

SelectedTask .DSAInfo.Shared.insert (Var);

}

if

if

CorrectedDSA = SHARED
} else {

)

{

SelectedTask .DSAInfo. Firstprivate .insert(Var);
CorrectedDSA = FIRSTPRIVATE;

(PrintVerboseLevel

Var—>printAsOperand (dbgs () ,

if (isUnknown)

dbgs () << " _detected_scope: UNKNOWN";

else

PV_AutoScoping)
false);

{

dbgs () << " _detected_scope: " << DSAToString[CorrectedDSA];

if (CorrectedDSA != OriginalDSA)
dbgs() << ", _modified_original _scope _was:_" << DSAToString[OriginalDSA] << "\

n";

(AutoDeps && AutoDepsActivated && CorrectedDSA == SHARED) {
int VarDependency = DEP_NONE;

for (auto VarUse : CopyUsedinTaskValues)

bool UsedBeforeEntry
bool UsedAfterExit =

false

{

VarUse. IsAliveAfterExit;

bool ConditionA = true;

if (VarUse.lsAliveBeforeEntry) {
UsedBeforeEntry = true;
bool UsedInConcurrent = false;

bool UsedInATask =

false;

for (auto ConcurrentUse

if (ConcurrentUse. |

UsedInConcurrent =

// TODO ONLY TASK at same
Fl.TaskFuncinfo.PostOrder) {

for (auto ThisTask

if (Ol.dominates(ThisTask.Entry,

Exit , VarUse.l))

UsedInATask

true;

UsedInConcurrentValues)

true;

level

== VarUse. )

VarUse.l) && !'0Ol.dominates(ThisTask.
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1 if (!UsedInATask && UsedInConcurrent) {

2 ConditionA = false;

3 }

4 }

5 if (UsedBeforeEntry && UsedAfterExit && UsedInTask==WRITTEN) {
6 VarDependency= DEP_INOUT;

7 } else if (UsedAfterExit && UsedInTask==WRITTEN) {
8 if (VarDependency == DEP_NONE)

9 VarDependency = DEP_OUT;

10 else if(VarDependency==DEP_IN)

il VarDependency= DEP_INOUT;

12 } else if (UsedBeforeEntry) {

13 if (ConditionA){

14 if(VarDependency == DEP_NONE)

15 VarDependency = DEP_IN;

16 else if(VarDependency==DEP_OUT)

17 VarDependency=DEP_INOUT;

18 }

19 }

20 }

21

22 if(VarDependency != DEP_NONE) {

23 bool correctDEP= false;

24 if(VarDependency== DEP_IN){

25 for (Dependinfo In : SelectedTask.Dependsinfo.Ins){
26 if(In.Base == Var){

27 correctDEP = true;

28 break;

29 }

30 }

31 }

32 else if(VarDependency== DEP_OUT) {

33 for (Dependinfo Out : SelectedTask.Dependsinfo.Outs) {
34 if(Out.Base == Var){

35 correctDEP = true;

36 break;

37 }

38 }

39 }
40 else if(VarDependency== DEP_INOUT) {

4 for (Dependinfo Inout : SelectedTask.Dependsinfo.lInouts){
42 if(Inout.Base == Var){

43 correctDEP = true;

44 break;

45 }

46 }

47 }

48 if (! correctDEP){

49 dbgs () << "\033[1;31lmPossible_ ERROR:_ " ;

50 Var—>printAsOperand (dbgs (), false);

51 dbgs () << " _should_be_" << VarDependencyToString[VarDependency] << "

\033[0m\n";

52 }

53 elsef

54 dbgs () << "\033[1;32mDependencies_seems_OK!_\033[0m\n";
55 }

56 }

57 }

58 else if (! AutoDepsActivated) {

59 bool depExists= false;
60

61 for (Dependinfo In : SelectedTask.Dependsinfo.lIns){
62 if(In.Base == Var){

63 depExists = true;

64 break;

65 }

66 }

67 if (! depExists)

68 for (Dependinfo Out : SelectedTask.Dependsinfo.Outs){
69 if(Out.Base == Var){

70 depExists = true;

71 break;

72 }

73 }

40
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1 if (! depExists)
2 for (Dependinfo Inout : SelectedTask.Dependsinfo.lInouts){
3 if(Ilnout.Base == Var){
4 depExists = true;
5 break;
6 }
7 }
8 if(depExists){
9 dbgs () << "\033[1;35mPossible_Warning:_";
10 Var—>printAsOperand (dbgs (), false);
1 dbgs () << "_should_not_be_a_dependency, \033[0m\n";
12 }
13 }
14 if (! DisableAutorelease) {
15 // Calculate automatic release clauses for outs
16 for (Dependinfo &OutDepend : SelectedTask.Dependsinfo.Outs)
17 if (isSameVar (OutDepend.Base, Var)) {
18 // Only shared variables can be released
19 bool IsShared = false;
20 for (auto SharedVar : SelectedTask.DSAInfo.Shared) {
21 if (isSameVar (OutDepend.Base, SharedVar))
22 IsShared = true;
23 }
24
25 if (IsShared)
26 getReleasePoints (SelectedTask, CopyUsedinTaskValues, OutDepend, Ol, FI.
ReleaseFunclinfo.PostOrder, OUT, LI, LA, BAA, SE, AC, DT, F);
27 }
28
29 // Calculate automatic release clasues for inouts
30 for (Dependinfo &InOutDepend : SelectedTask.Dependsinfo.lnouts)
31 if (isSameVar (InOutDepend.Base, Var)) {
32 // Only shared variables can be released
33 bool IsShared = false;
34 for (auto SharedVar : SelectedTask.DSAInfo.Shared) {
35 if (isSameVar (InOutDepend.Base, SharedVar))
36 IsShared = true;
37 1
38
39 if (IsShared)
40 getReleasePoints(SelectedTask, CopyUsedinTaskValues, InOutDepend, OI,
FI.ReleaseFuncinfo.PostOrder, INOUT, LI, LA, BAA, SE, AC, DT, F);
2 }
42 }
43 1
44
45 LLVM_DEBUG(dbgs () << "Num_SHARED_" << numShared << "_Num_ PRIVATE "
46 << numPrivate << " _Num_FIRSTPRIVATE_" << numFirstPrivate
47 << " _Num UNDEF_" << numUnknown << " _\n");
48
49 GnumShared += numShared;
50 GnumPrivate += numPrivate;
51 GnumFirstPrivate += numFirstPrivate;
52 GnumUnknown += numUnknown;
53 }
54
55 LLVM_DEBUG (dbgs () << "\n");
56 if (PrintVerboselLevel == PV_AutoRelease)
57 for (Releaselnfo ReleasePoint : Fl.ReleaseFuncinfo.PostOrder) {
58 dbgs () << "[Release_point]_" << ReleasePoint.l—>getParent ()—>getName() << "_\n";
59 }
60
61 if ((GnumShared + GnumPrivate + GnumUnknown + GnumFirstPrivate) > 0)
62 LLVM_DEBUG (dbgs () << "GLOBAL_Num_SHARED_" << GnumShared << "_Num_PRIVATE_" <<

GnumPrivate << "_Num_FIRSTPRIVATE_" << GnumFirstPrivate << " _Num_UNDEF_" <<
GnumUnknown << " _\n");

M

Figure 33: Modifications targeting OpenMP correctness analysis in the LLVM compiler.
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