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1. Executive Summary
This Deliverable summarizes the progress of Work Package 3 up until Milestone 2, and is a report describingthe energy-efficiency approaches, the predictable executionmodels and software resilient solutions for parallelexecution, without considering the other constraints.
The energy-efficiency approaches are based on the energy-models defined in Task 3.1, incorporating the energyconsumption of the major components present in selected parallel heterogeneous architectures, as well asthe available power management knobs. It describes and evaluates the ability of these techniques to estimatetheir impact on the overall energy-performance trade-off achievable on the target architecture. We show howthe techniques are successfully used to determine the most efficient operation mode for energy-efficiency, atlow-overhead by model-based evaluation of profiling data, as well as strategies for optimization that utilizedynamic voltage-frequency scaling and optimize for the use of the most efficient components in the system,with a special focus on floating-point operations.
The predictable execution models present techniques for joint consideration of process allocation, both atthe host and accelerator, and effects of memory and on-chip network resources. We describe how memoryaccess and communication costs have impact on the time-predictability of parallel applications, and identifythe execution models to consider, with a focus on Logical Execution Time and communication middlewaresuch as ROS. We present the ongoing development of the relevant timing analysis approach, based on real-time schedulability analysis techniques to estimate upper bounds on response times and derive meaningfulstatistics on the response-time distribution. We study the execution behavior of FPGA accelerators for DeepNeural Networks to the purpose of performing timing analysis. We also address design optimizations of PGAdesign to handle reconfigurable accelerators under timing constraints.
The software resiliency solutions provide modeling and programmer’s techniques to protect the most vulner-able components of the selected parallel architectures, from the application to architecture, resulting intotwo orthogonal and coordinated software protection solutions that are integrated at all layers of the AMPEREsystem stack. One of the presented solutions is fully integrated in the synthesis tool as a specific optimiza-tion component, while the other is a programmer-in-the-loop approach for increased flexibility. Together theyprovide two complementary approaches for fault-tolerance, which is the focus of this milestone.
All goals set out to be achievedby the endofMilestone 2havebeen achieved, and the alignment of the differentanalysis and optimization components provide an excellent starting point for the coming work in Milestone 3,in which the techniques presented in this report are integrated to construct the multi-criteria optimizationframework.
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2. Introduction

This report describes the single-criterion optimization for energy-efficiency, predictable execution, and soft-ware resiliency techniques for the AMPERE framework. Due to the single-criterion optimization scope, theseoptimization techniques are presented in isolation, but will be integrated and co-evaluated as part of the nextmilestone (MS3). Several steps have already been taken in preparation of this, and will be presented in thisdeliverable. The tasks within Work Package 3 interact closely with components developed in Work Packages 1,2, 4, and 5. As part of Milestone 2, significant effort has been investigated into aligning the work done in thedifferent work packages to simplify later integration, and aid the design also in the single-criterion optimizationphase. An overview of the interactions of WP3 (shown in dark gray) is presented in Figure 1.
Figure 1: An overview of the interaction of WP3 (gray) with the other components within AMPERE.

One of the main challenges of the AMPERE project is to enable Model Driven Engineering (MDE) of physicallyentangled systems of systems, accounting for parallelism and heterogeneous in high-end embedded systems.As such,MDE tools provide the front-end to the entire AMPERE ecosystem, and they are represented at the top-left of the figurewhere Domain SpecificModeling Languages (DSML), e.g., AMALTHEA, AUTOSAR, CAPELLA, areused to describe the system in a modular and composable manner, and annotated by system designers withfunctional and non-functional requirements that determine how the system is generated. These are encodedin the system model as properties of system components. In particular, AMPERE focuses on the addition ofnon-functional requirement annotations that promote the automatic optimization of MDE driven systems ofsystems, with respect to energy, timing guarantees, reliability, and heterogenouity. The DSML and the require-ment annotations for DSML in the context of AMPERE are further described in D1.3. The primary DSML usedin AMPERE is AMALTHEA1, which is representative also for AUTOSAR.
Once the system has been modeled in (or converted to) AMALTHEA, the code generator described in D2.2generates the corresponding source code, including annotations for the OpenMP parallel programming model(PPM), describing the dependencies and parallelism exposed in the modeled system. This is represented bythe Code Gen step in the figure. The source code is passed to the OpenMP compiler, as described in D2.2for compilation into binaries. Importantly, the OpenMP compiler has been extended to not only produce thebinary images themselves, but also structured information about the system, which is used for the optimization

1The AMPERE project also develops a CAPELLA to AMALTHEA bridge, to which translates CAPELLA models into their AMALTHEAcounterpart.
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phase, described in this deliverable, to ensure that the final system fulfills all requirements modeled in theDSML. The fundamental data structure generated as part of the structured information is the Task DependencyGraph (TDG), as described in D6.2. The TDG will recurr in the following sections of this deliverable, linking thecontributions together.
The TDG provides the structure of dependencies between tasks and runnables as outlined in the DSML, aswell as additional meta-information that is used for the optimization. This information is described in detail inD6.2, but includes the properties (e.g., non-functional requirements) annotated in theDSML towardswhich thesystem should be optimized. Additionally, the TDG contains profiling information from the generated system,through the execution of the Extrae [1] profiling infrastructure, described in D6.3. As part of the compilationprocess, the generated binary image is profiled, and the information embedded in the TDG. As such, the TDGprovides the necessary abstraction for determining themodeled requirements and dependencies of every taskin the system, as well as deep information about the behavior of each task as achieved through profiling. ThisTDG is the input to the optimization phase developed in WP3, and which this deliverable reports on. Commonto all optimization components in the system is that they use the profile-based information to populate theadditional TDG members, e.g., the execution time.
The optimization phase, as developed in WP3 and reported on in this deliverable, is highlighted in the graybox in Figure 1. It consists of multiple components developed in parallel: the timing analysis and optimization,resiliency optimization techniques, energy optimization, and heterogeneous scheduling.
As part of Milestone 2, which this deliverable reports on, the AMPERE optimization phase is developed asa single-criterion optimization framework. This means that each optimization component is developed andtested in isolation, to ensure parallel development. In the next milestone, MS3, the optimization phase willbe transformed into a multi-criteria optimization phase, in which all components are co-operating to ensurethat the system fulfills all requirements modeled in the DSML. In light of this, the remainder of this deliverablepresents each optimization component in isolation. However, as part ofMS2 significant effort has already beeninvested in the planning for future integration, as mainly outlined by D6.2, and as this deliverable aims alsoto provide insights on how the independently developed optimization components fit together. Furthermore,this deliverable outlines the different considerations and techniques used to achieve the respective goals ofeach component. Fundamentally, this is achieved through the targeting of the common interfaces, such as theTDG, as described in D6.2. Note that due to the single-criterion optimization of this milestone, the ordering ofthe optimization components in the grey box in Figure 1 is not yet determined, but will be explored during theintegration to the multi-critera optimization planned for Milestone 3.
Returning to Figure 1, once the optimization phase, highlighted in the gray box, has completed, the optimiza-tion phase is either finished, i.e., all functional and non-functional requirements are guaranteed to be upheld,or another round of optimization is required – in particular, the AMPERE optimization relies on an optimizationloop as reported in D3.1, and additional profiling information may be required to complete the optimizationstage, either by verifying that the offline determined configuration of the system is correct also during on-line execution, or to collect additional information required by one or more optimization components. Thisis achieved using the convergence outcome of the optimization stage, as shown in the figure, which exits theoptimization loop once all optimization components have successfully optimized the respective NFRs. At thatpoint, the binary system as compiled from the sources corresponding to the TDG is final. If additional informa-tion is required, e.g., a new profiling run, instead another iteration of the optimization loop is triggered.
As the TDG is a common data structure between the previous work packages and the optimization pipelineof WP3, it also enables a second important feature, at the end of the optimization phase. The encoded infor-mation in the TDG is fed back to the earlier components in the AMPERE pipeline, such that information in themodel could either be updated, or warnings emitted to the MDE framework, and made available to the enduser. This is highlighted as the Annotated TDG in the figure.
At the end of the optimization pipeline, the TDG information can also be used to inject runtime hooks andconfiguration headers based on the optimization outcome into the generated source code. This is highlightedas the Graph to Source step, and provides the mechanism to encode optimization outcomes, such as DVFS

3
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configuration, scheduling orders, and redundancy aspects into the system. As shown in the top-right of thefigure, this information is parsed by the AMPERE runtime components, developed in WP4, at the start-up ofthe system. This enables actuation and monitoring of the non-functional requirements optimized for in WP3at runtime, in accordance with the expressed goals of the project.
The remainder of this deliverable describes the single-criterion optimization components in detail.
• Chapter 3 addresses Task 3.4, presenting techniques for modular redundancy for critical components,and coordinated solutions involving different layers of the AMPERE system stack. It presents new soft-ware protection techniques for fault tolerance.
• Chapter 4 addresses Task 3.2, and the optimization of energy consumption in the AMPERE system, aswellas strategies to utilize the available power management knobs to optimize overall energy-performancefor major components in the system.
• Chapter 5 addresses Task 3.3, investigating the timing effects of host, accelerator, and memory system,and communication cost impact on time-predictability. It presents the ROS middleware and the LogicalExecution Timemodel for consideration in the project. It presents relevant real-time analysis techniquesto estimate upper bounds on the response times, as well as resource reservation paradigms of the FPGAfabric.

4
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3. Resilient Software Techniques
Dependability is the property of a system that reflects the user’s degree of trust in that system, i.e., the confi-dence of the user that it will operate as expected and that it will not fail in normal use. Different metrics areconsidered for measuring the dependability of a system, including the following:

1. availability, or the probability that the system will be up and running when it needs to be used;
2. reliability, or the probability that the system will conform to specification during a specified period oftime;
3. safety, a measure of how likely the system will cause damage to people or its environment;
4. integrity, the absence of improper system alterations; and
5. maintainability, or the capacity of the system to undergo modifications and repairs.

As described in the DoA [2], and based on the current trend towards many-core heterogeneous platforms,AMPERE aims at enhancing the robustness of the system, and thus focuses in particular on improving reliabilityand availability.
This section is based on the studies presented in D3.1, Multi-criteria optimisation requirements [3] with regardto software and hardware resilient methods, and it includes the work performed in Task 3.4, Resilient softwaretechniques during Phase 2 of the project (m7-m15). For this period, Task 3.4 focuses only on fault tolerance,being the target at MS2 a first version of software resilient solutions not considering other non-functionalconstraints. Figure 2 presents a graphic description of the synergies of Task 3.4 and other tasks in the project.

Figure 2: Synergies between Task 3.4 and other tasks in the project.
T3.1

T3.4T3.2 T3.3

T3.5

T2.2T4.4

T3.1 Multi-criteria optimisation
requirements specification

T3.2 Energy optimisation strategies

T3.3 Predictable execution models

T3.4 Resilient software techniques

T3.5 Multi-criteria optimisation
validation

T2.2 Meta parallel programming 
abstraction and parallel 
programming model extensions

T4.4 Runtime resilience methods

m1:m6

m7:m27

m28:m36

The reminder of the section introduces first the software resilient solutions implemented (Section 3.1), andthen a study of the interaction of the described techniques with critical aspects of the overall system, includingscheduling, orchestration and proactive reaction to faults (Section 3.2).

3.1. Software Resilient Solutions

Correctness is of great significance in real-time systems, especially if they are applied in automotive or relatedindustries, where results might influence people’s safety. Even cosmic radiation can influence systems, whichmakes it impossible to guarantee a correct result in some cases. Therefore, in the most critical parts of thesystem,where errors are not tolerable, theremight be a need to double-check the result that is being produced.This can be doneby repeating the sameworkmultiple times, and then comparing the results, a.k.a. redundancyor replication.
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Redundancy affects different layers of the AMPERE’s software stack. First, the DSML (i.e., AMALTHEA) shallexpose a new feature to enable user’s defining which parts of the model must be replicated, and which arethe results to be considered for result checking. Then, the code synthesis tool (i.e., APP4MC SLG) must beenhanced to understand these new capabilities, so it can transform the DSML features into features of theparallel programming model. Consequently, the parallel programming framework (i.e., OpenMP), includingthe model, the compiler, and the runtime system, must be enhanced as well (as already noted in D3.1 [3]) toinclude the new redundancy feature.
Figure 3: Workflow of a sample application.

Read image

Convert image

Analysis A Analysis B

Merge and Print

i=[0:count-1]

Task

image

image

resultBresultA

Sequential runnable Concurrent runnables

To illustrate themodifications implemented targeting soft-ware resilience, Figure 3 shows the workflow of a simpleapplication enriched with information on how the applica-tion can bemodeled with AMALTHEA tasks and runnables.The application runs count times a pipeline composed offour steps: (1) read an image; (2) convert the image toa suitable format; (3) two different concurrent activitiesprocess the image to produce results; and (4) merge andprint the results. The figure also shows which parts aresuitable for runnable granularity (green line for sequentialrunnables, and orange line for concurrent runnables, i.e.,runnables not causing race conditions) or task granularity(yellow line), considering the AMALTHEA model.
The AMALTHEAmodel conveniently includes custom prop-erties that allow enhancing the model in a generic way.Their reason to be is that AMALTHEA is constantly evolv-ing, and many properties might not be yet available, as itis our case. So we include a new custom property, called redundancy, to define which runnables are to bereplicated. The property includes an integer value defining the number of replicas to create.
The automatic code generator [4], provided by the AMPERE partner BOSCH, is a plugin to the APP4MC projectthat currently transforms AMALTHEA models into sequential C programs. We have incremented this tool toaccept the new custom properties that define parallelism (as described in D1.3 [5]), and also transform theredundancy custom property into a new clause attached to the OpenMP task directive1. Figure 4 shows agraphic description of the features at the AMALTHEA and OpenMP level, and the role of the code synthesizer.

Figure 4: High-level description of the transformations for software resilience.
“redundancy” -> (integer)2

#pragma omp task redundancy(2)

AMALTHEA

OpenMP

Code synthesis tool

Figure 6a shows the OpenMP code generated automatically from the application shown in Figure 3. Further-more, Figure 6b shows the Task Dependency Graph (TDG) that represents the execution flow of the OpenMPtasks. There, T3 corresponds to theAnalysisA task (or runnable in AMALTHEA), and it is duplicated togetherwith the data dependencies, as indicated in the task directive. The duplication has an impact on the non-functional requirements considered in the project, including time, energy and performance. For this reason,the TDG is enriched with this information, and then used by the analysis tools of the project for consideringit in the analysis (the interface for using the TDG across the different tools in AMPERE, including compiler andthe diverse analysis tools, is defined in D6.2 [7]).
1Details about the transformations implemented in the AMALTHEA code synthesis tool targeting performance and redundancy arepresented in D2.2 [6]

6
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Figure 5: Automatic transformations generated from the application in Figure 3.
(a) OpenMP code generated with the AMALTHEA synthesistool.
#pragma omp p a r a l l e l#pragma omp s i n g l e{ #pragma omp t a s k depend ( out : Image )/ / T 1run_read_ image ( " " ) ;

#pragma omp t a s k depend ( i n ou t : Image )/ / T2run_conver t_ image ( " " ) ;
#pragma omp t a s k depend ( i n : Image ) \depend ( out : R e s u l t s A ) redundancy ( 2 )/ / T3r u n _ a n a l y s i s A ( " " ) ;
#pragma omp t a s k depend ( i n : Image ) \depend ( out : R e s u l t s B )/ / T4r u n _ a n a l y s i s B ( " " ) ;
#pragma omp t a s k depend ( i n : Re su l t sA , R e s u l t s B )/ / T5run_merge_ re su l t s ( " " ) ;}

(b) Task Dependency Graph generated bythe OpenMP compiler/runtime.

T1

T2

T31 T4

T5

image

image
image

resultB
resultA

T32

The information described in the OpenMP directives and clauses is later processed by the compiler and theruntime systems. The current implementation works as follows:
1. The compiler transforms the redundancy clause into a new parameter added to the runtime call thatcreates the corresponding task. This implementation uses theMercurium [8] source-to-source compilerand the GCC libgomp [9] runtime library.
2. The runtime system interprets the new parameter and creates additional tasks (the number is definedby the value passed as parameter) to validate the correctness of the work carried out. This process istransparent to the user, except if an error is detected in the computation of a redundant task, in whichcase either the user, or other parts of the system, will be notified.

Figure 7 shows an example of the report currently provided by the runtime. In the left, the report shows acorrect execution with no errors detected with the redundant tasks, and in the right, the report when an errorhas been detected.

3.2. Proactive Orchestration

The strategy investigated by THALIT/UNISI is in line and complementary to the one carried out by BSC. It aims tobuild fault tolerance from the application layer, which means that the programmer is responsible for decidingwhich aspects of the algorithm need to be protected, making a distinction between programmer responsibility

7
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Figure 7: Sample report produced by the runtime executing the application in Figure 3 with AnalysisAreplicated.
single begins (thread:1571006720)

task AnalysisA created (thread:1571006720)

task AnalysisB created (thread:1571006720)

task AnalysisA begins (thread:1579399424)

task AnalysisB begins (thread:1579399424)

single begins (thread:2115434752)

task AnalysisA created (thread:2115434752)

reduntant task AnalysisA created (thread:2115434752)

task AnalysisB created (thread:2115434752)

task AnalysisA begins (thread:2092877888)

result 5

redundant task Analysis begins (thread:2092877888)

result 5

Ok!

task AnalysisB begins (thread:2092877888)

single begins (thread:2115434752)

task AnalysisA created (thread:2115434752)

reduntant task AnalysisA created (thread:2115434752)

task AnalysisB created (thread:2115434752)

task AnalysisA begins (thread:2092877888)

result 5

redundant task Analysis begins (thread:2092877888)

result 6

Error!

task AnalysisB begins (thread:2092877888)

OK ERROR

and automatic fault tolerance. The main part of the effort was spent trying to figure out ways for limitingthe programmer effort and the interaction between application and fault tolerance code as to minimize theeffects of this strategy on code productivity, maintainability, correctness testing. The THALIT/UNISI approachdeal with the single instance of an application execution, aiming to enforce some predicative conditions onstate variables. The whole procedure is quite general: it is composed of modular observing code built around apredicate, therefore a condition over certain state variables of the algorithm to be observed, which determineswhen its behavior is within the expected bounds.
UNISI has studied an approach, in agreement with THALIT, for allowing the programmer to specify an observercode on some state variables of the algorithm. This approach aims to improve the resilience of the applicationby focusing on early detection of symptoms that may lead to system faults. The final purpose is to develop anonline run-time technique which can detect errors in software behavior that could lead computed values todiverge from those of an error-free program execution. This can be done using an external piece of softwarecapable of observing the main program and then raise a flag if there is a divergence in the software-stateevolution compared to the normal one. In this manner, it is possible to provide the protection required bycritical applications with a low cost (in terms of space, design complexity and power consumption) andwithoutslowing them down, enabling high performance in a safer environment. In fact, one of the requirements of thismechanism is to limit as much as possible the interference between strictly application code and this observerbased control code. In this way, by maintaining these two concepts as much decoupled as possible, we allowthe programmer to specify some predicates over the state variables, which are observed during the softwareruntime, as to understand if the monitored predicates are within the expected bounds or if some of them arestarting to diverge.
The main idea is to develop an evolution of a common C++ design pattern called Observer. It is a behavioraldesign pattern that lets the programmer to define a subscription mechanism to notify multiple objects aboutany events that happen to the object they are observing. Starting from this simple but instructive template,the goal is to produce an observer capable of monitoring the behavior of a specific software component, beingat the same time as independent as possible with respect to the observed object. One of the main advantagesrelated to this approach concerns the possibility of having an observer code which is external respect the maincode and with minimal coupling with it. In fact, this approach will not increase the complexity of the observedcode, therefore limiting the interaction with the observer only to those components strictly necessary for thepurpose of sharing the state of the interested variables. This also guarantees a further advantage, namely thatof the generality of the observer: proceeding along this path it will be possible to observe different types ofvariables without requiring any modification to the observer code. Another relevant aspect concerns the wayin which the correct behavior or not of the observed variable will be verified. To this end, the observer codeneeds some reference values to compare with the observed variables, for determining their correct value.

8
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In fact, the observer will monitor if the observed variables keep satisfying the predicate which indicates acorrect behavior. Conversely, when the predicate becomes false there is an evidence of a possible incorrectexecution. Such predicates are a function of the specific case and observed algorithm. For this purpose, aspecific predicate will be associated to each instance of the observer code, with the aim of using it to monitorthe behavior of the state of the algorithm. Each predicate is passed as a function parameter to any specificobserver code.
The proposed software resilience method was applied within the THALIT use-case of the AMPERE project, inorder to monitor the behavior of a Kalman Filter algorithm. The first experiments done so far have provedto be promising, although further refinement will be needed, with the observer which is able to monitor theKalman filter behavior and notify the user when the predicate fails. Figure 8 shows a block diagram on theoperation of the Observer.

Figure 8: Block diagram on the operation of the Observer module

In such figure, the two rounded rectangles represent the two classes Observer and Kalman Filter, the blackrectangles represent the input and output variables for the Kalman filter class, and the circle stands for thePredicate function. In addition, the blue labels represent the different functions and the two green arrows areused to indicate the state variable and predicate that are read as input of the Observer class. As can be seen,the Kalman filter reads the sensor data in input and produces as output an estimated position which is thenused by the main program. During this procedure, obviously, its internal state can change and this change iscaptured by the Observer, which monitors the behavior of the state variable. For each cycle of the Kalmanfilter, using the Predicate function, the Observer is able to check whether the state variable is still valid (bluediamond block), otherwise it is possible to trigger an alarm to notify the main program about this unexpectedbehavior.
A more detailed workflow explanation is shown in Figure 9, where the state of interest is represented by asingle variable for simplicity, and the predicate is a threshold on such variable. The KalmanFilter class, whichrepresents the application code, derives from Observable class and it must implement the getAddr() functionto return the address of the state needed by the observer’s predicate. Lastly, in the main function (green box),the whole procedure related to the initialization and use of the Observer class is reported. In particular, afterthe procedure for initializing and coupling the Observer with the Kalman filter, each time a new input value
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arrives it is sent to the Kalman filter class to be processed. Then, the Observer is called for monitoring thevariable of interest. In this way the Observer checks the new value at very update.
Figure 9: Execution workflow of the Observer module

3.3. Summary

The two mechanisms proposed by BSC and THALIT/UNISI have some common aspects but they are also com-plementary, each onewith its own pros and cons. So, dependently on the specific case, the agnostic replicationassisted by the run-time execution proposed by BSC could be assisted by the observer solution proposed byTHALIT/UNISI, with the cost of having the programmer a little bit more included in the loop. Even if at the firstsight one could think that these techniques achieve the same objective by using different approaches, it is notcompletely true and it may have sense to combine the two. In fact, the observer approach proposed by THAL-IT/UNISI monitors the software, and it could identify the cases in which the execution starts to diverge fromthe expected one, but not sufficiently to be yet triggered by wrong outputs. This is a sort of gray area, whichcannot be managed using replication techniques, where this approach allows some different options insteadof simply reject the outcome of that process, for instance raising a flag as initial alert but keeping-on to use thecalculated results. In such cases, instead of seen the function as a black-box, with some inputs and outputs,the observer may allow to monitor also some internal mechanisms of it, providing a bit more of flexibility.
Another possibility can be to use both these techniques together, with an orthogonal approach: it could bepossible to replicate the algorithm execution including the observer onboard, i.e. replicating the observeralong with the different copies of the function. Even if this process results in a simple copy-paste of the code, itcould however provide some useful information since it might catch some software or transient errors whichmay happen in different places of memories or different units on which the several copies of the code arebeing executed. Furthermore, another advantage that could be obtained by using both strategies together, isto make more efficient the control of the outputs produced by the replicated versions of the software. In fact,comparing different outputs of some replicated functions could be difficult or time consuming. This checkingprocedure, which is needed by the BSC replication approach, could be simplified if the THALIT/UNISI observer
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will be capable of providing some metrics in order to determine if the execution has been correct or not. Thekey advantage is represented by the fact that these metrics measured over some observed state variableswould have a smaller size than the final output, which make the comparison procedure easier. Lastly, anotherimprovement is related to the final majority voting phase: in the aforementioned cases in which a soft-erroris corrupting the execution of a certain copy, the observer can detect it and raise a flag so as to alert theredundancy manager that one of the copies is not working properly and, consequently, this can be taken intoaccount in the majority voting phase. Therefore, the final objective is to integrate the two approaches in anorthogonal way as to compensate for any weak points of each other and exploit the strengths of the twotechniques.
In conclusion, THALIT/UNISI and BSC approaches can be used in isolation and, possibly, also in an integratedfashion with minimal coupling, as to adapt to the various parts of a complex system in order to put down ad-hoc strategies for fault-tolerance in software. In fact, the two different approaches could be seen as a sort of“tool set” for the programmer, for providing the possibility to use one, the other or both together, dependingon the needs required for a correct assessment of the software execution. In our view, this would provide asignificant prospective for the whole AMPERE project.
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4. Energy Optimisation Strategies
Task 3.2 is responsible for the development of efficient resource management strategies for optimizing theenergy efficiency of the system, and the target at the presented MS2 is the evaluation of energy optimizationaspects in the single-criterion optimization phase. Based on this, the presentation can be divided into twoclear sub-goals. The first is to provide a deep understanding of the energy profile of different tasks, suchthat their optimal energy configuration given specific constraints can be identified. Such constraints may beinherent to the energy requirements of the modeled application, or follow from functional and non-functionalrequirements that are not strictly related to energy, e.g., real-time execution requirements. The second sub-goal is to use this information to optimize the energy efficiency of the system.
There are two main types of strategies that can be used to improve energy-efficiency; non-intrusive and intru-sive methods. Non-intrusive methods do not require any changes to the runnable code within tasks, primarilyby utilizing hardware techniques. The main non-intrusive technique available for controlling energy-efficiencyis Dynamic Voltage Frequency Scaling (DVFS). By altering the operating voltage and frequency, the overall en-ergy spent to complete a task can be impacted. DVFS can be statically decided during offline scheduling, butcan be made further effective by dynamically rescheduling the system at runtime, by redistributing energybudgets among tasks to further optimize the energy usage. Energy efficiency optimization through intrusivemethods involves changes to the code of runnables in the system, e.g., through reduced precision computing,which requires less switching activity to perform the computation.
As part of MS2, Task 3.2 primarily presents results in the front-end, related to the understanding of the energycharacteristics of tasks, as well as in non-intrusive static DVFS optimization. This is motivated by the single-criterion aspect of MS2, in which energy is optimized in isolation from other non-functional requirements.

4.1. Energy Analysis Front-End
An overview of the front-end for the energy optimization framework is shown in Figure 10. The input to theenergy optimization framework comes from the Task Dependency Graph (TDG), shown in the left of the figure,and described in detail in D6.2 [7]. For each task in the TDG, the energy budget as described in D1.3 is forwarded(as described in D2.2), together with additional functional and non-functional information about the task.Together with this, the profiling data for each task is provided, as generated by the Extrae tool, as described inD6.3. Using this profiling information, the energy optimization front-end produces an energy profile for eachtask.

Figure 10: An overview of the energy estimation flow in WP3.
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To reduce the amount of profiling runs that are required, the Extrae profiling is only performed once at a ref-erence frequency fref . From this reference profile, the energy front-end extracts the performance counteractivity a and the execution time t from the profiled execution of the task. This is used to estimate the en-ergy profile of the task at the remaining DVFS operating points of the system. The primary benefit of this

12



D3.2 - Single-Criterion Energy, Execution Model and ResiliencyVersion 1.0

approach is that the abstraction layer of the domain-specific modeling language remains intact, even whenintroducing complex time-frequency dependencies into the model. In the single-core, single-frequency case –i.e., the starting point before the AMPERE project – it is sufficient to specify a single execution time for eachtask. This execution time scales non-linearly with voltage/frequency and without this estimation framework,modeling complexity significantly increases as each task must have individually defined execution times foreach frequency.
Given by the model or extracted from the Extrae traces, the inputs to the energy front-end are thus the refer-ence execution time t and the activity a, both of which are given at a single reference frequency fref . The front-end uses three components to produce an energy estimate for all frequencies f ∈ FDV FS , where FDV FS isthe set of discrete frequencies that the system can run at. To produce the energy estimate for f ∈ FDV FS itis given as target frequency ftarget to the front-end, as shown in the left of Figure 10. Internally, the front-endis constructed by three main components, the time-scaling model tf (a), the power-scaling model Pf (a) andthe energy-scaling model Ef (a). As energy is the time-power product, the t and P models account for theeffects of DVFS in each dimension. Intuitively, one can imagine a time-power graph (time on X axis) in which
t scales the switching activity a horizontally in time, and P scales the power usage of the switching activity avertically. Both models use pre-trained correlation databases that are part of the Platform Model.
The time-scalingmodel tf (a) is a set of linear models, one for each frequency f , on the form tf (a) = treflen×
(A× ftarget× B

a +C)+D, where treflen is the excecution time measured at the reference frequency as partof profiling, and ftarget is the target frequency given as input to the analysis and for which the estimate is to begenerated. A,B,C,D are constants trained by fitting themodel to the time scaling effects of a representativeset of benchmarks, to account for different memory and compute patterns. This training is done ahead oftime, and the weights are given as part of the platform model. This model serves as an initial and sufficientlyaccurate model for the single-criterion optimization phase, but will receive further attention during the multi-criteria optimization phase (as part of the next milestone) to improve accuracy also under co-operative timeestimation from all relevant optimization criteria. At that point timing impact is not limited only to DVFS butalso e.g., memory interference, whichmay also affect the definition of the timemodel. Further time estimationaspects are discussed in Section 5.
The power-scaling model Pf (a) is fundamentally a wrapper around the power model pf (a) used in the onlineenergy monitor, as described in D4.2, and is on the form Pf (a) = pf (a) × A + B. As outlined in D4.2,different counters are representative for the power usage at different frequencies f , and thus the compositionof amay not be the same for the reference frequency fref and the target frequency ftarget1. To address this,the Extrae profiling input contains traces for all counters that are relevant for any frequency, such that datafor the expected counters can be passed to pf (a). However, as these counters are recorded at a differentfrequency, they need to be corrected to make the counters at fref , afref , representative for aftarget at thetarget frequency. This is achieved by fitting themodel’sA andB parameters using representative benchmarks.As with the time scaling model, this is done ahead of time and the information is stored in the platformmodel.Note that the model used does not contain any reference to ftarget, as AMPERE will provide an individual
pf (a) for each frequency f . Fundamentally, the chosen approach is to scale the output of pf (a) rather thanscaling the input a. This approach simplifies the models, as compared to correcting each individual countervalue in a, which would require approximately 50 different translations to be trained. The latter approach isprone to overfitting, which makes the former (and used) approach of scaling the output much more robust,providing better energy estimates over diverse sets of tasks. The parametersA andB used to achieve this alsohave intuitively understandable semantics, as A provides the increase in power attributable to the switchingactivity being performed at a different voltage level, whileB provides an offset for the increase in idle- powerunder the same circumstances.
In the current implementation of the t and P models, the a component is recorded over the entire task ex-ecution time, or using the terminology from D4.2, the entire task consists of a single frame – i.e., the timeduring which performance counters are registered. As part of our future work, we plan to apply the models

1See D4.2 for information on performance counter-frequency mapping
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to individual frames of the tasks (which is an additional feature provided by Extrae), to better account for in-dividual scaling factors of memory and compute bound segments of the code. This will improve the estimatesfor tasks which frequently switch between memory and compute bound execution styles. The online monitorpresented in D4.2, benefiting from direct access to the performance monitoring unit (PMU), already uses thisapproach with frame sizes of 100 ms. Finally, as shown in Figure 10, the energy usage is computed by Ef (a)as the time-power product of the previous models.
By executing the front-end once for each ftarget, an energy-frequencymodel is generated, as shown in the rightof Figure 10. This shows how, for each task, the energy consumption changes with each DVFS operating point
ftarget. This output can then be used for the energy optimization strategies presented in the next section.
Fundamentally, the analysis front-end could be implemented without the scaling models, only incorporatingthe activity a and execution time t provided by Extrae, and using the power model of D4.2 as-is. This wouldhowever require that ftarget is always set to fref , the frequency at which the profiling took place, and wouldtherefore require re-profiling of each individual DVFS operating point for each task in the TDG. The time spent insuch a setup could therefore be approximated asTprofiling = N×|τ |×

∑
f∈FDV FS tf , where |τ | is the numberof tasks in the TDG, and tf is the execution time for the task at frequency f . The size of |τ | for the use-casesof WP1 are for reference expected to be between 1 and 21, although models can be arbitrarily complex. To geta representative profile for the task, it is usually necessary to repeat the measurement several times, givingthe factor N . As this number grows rapidly with increasing complexity of the model, the presented scalingmodel allows us to decrease the profiling time approximately by a factor |FDV FS |. On the platforms selectedfor the AMPERE project, |FDV FS | ≈ 30. The energy estimate recieved is verified before system deployment– through the convergence evaluation as shown in Figure 1 – and only if there is significant deviation, anotherprofiling run is triggered. Thus, a more accurate model improves performance of the analysis phase, but doesnot affect the offline guarantees provided once the optimization phase has reached convergence.

4.1.1. Energy Analysis Performance Evaluation
As the quality of the optimization strategies (to be presented in the next section) depends on the performanceof the energy analysis done in the front-end, we provide here an evaluation of the approach to demonstrate itseffectiveness. For this evaluation we use the Rodinia benchmark suite [10], which incorporates a large numberof benchmarks with significantly different memory and computational patterns. Each benchmark correspondsto a single runnable, each as an individual task in the TDG. We perform the experiment on the NVIDIA Xavierplatform selected for the project, profiling at fref = 1.2GHz, and evaluate the accuracy of the estimatedenergy values at ftarget = 700MHz and ftarget = 2.2GHz, presenting the results in Figure 11.
The main pattern that can be seen, both for 700 MHz (scaling down from fref ) and 2.2 GHz (scaling up from
fref ), is that the model is prone to over-estimation. While an exact model would be best, over-estimation ispreferable to under-estimation, as this provides a safety margin for the system. The most significant part ofthe mismatch between the energy estimate and the measured numbers is the time model tf (a), which scalesthe execution time of the benchmark.
Due to the current implementation using only a single frame for the entire benchmark, the tmodel has a hardtime to estimate the impact of DVFS on the execution time, as the activity a is spread out over the entirebenchmark. This obfuscates discrete regions of compute and memory boundedness, which scale differentlyunder DVFS. Scaling the core frequency during a memory bound region does not significantly alter the exe-cution time, only fewer cycles pass while waiting for the memory latency (which has its own clock domain),which is not affected. In a perfect compute bound region on the other hand, DVFS has a more linear impacton energy. This effect is particularly clear in some benchmarks, e.g., backprop, which spends a large amountof its execution time initializing data, which is a memory bound operation. At the end, accounting for approx-imately 10% of the execution time, the benchmark becomes significantly compute bound. When consideringa single activity frame for the entire benchmark, the activity a is spread out over the entire benchmark, lead-ing to an incorrect time scaling. Due to this effect, the backprop benchmark has its energy usage significantly
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Figure 11: The energy values provided by the model as compared to the measured values for benchmarksfrom the Rodinia benchmark suite.

under-estimated. As outlined previously, the impact of this effect will be limited as part of ongoing develop-ment, as Extrae can be configured to provide performance counter activity at fixed intervals, allowing us toattribute activity to discrete frames and scale them independently. Furthermore, additional timing effects areinvestigated within the project (e.g., through inter-task interference), and as these aspects are combined inthe multi-criteria optimization phase, additional development (or full integration) on the model is expected.
Another effect that is present in the NVIDIA Xavier platform is the custom hardware-managed clock and powergating, overwhich software has no influence. This hardware feature is activated for frequencies below 2.0GHz,
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at which the hardware is actively trying to conserve power, but completely deactivated at higher frequencies,allowing the system to run at full throttle. An important effect of this is that the reference frequency used inthe experiment fref = 1.2 GHz is executing in the hardware power managed mode, while only one of thetarget frequencies (ftarget = 700MHz) is. The other target frequency (ftarget = 2.2 GHz) is running in the un-throttled mode. This difference impacts the recorded performance counter data a, and manifests in that the700 MHz estimator performs significantly better than the 2.2 GHz counterpart. Also in this case, the memoryand compute boundedness of the benchmarks play a role, as the un-throttledmodemainly affects thememoryand SoC power domains, and as such memory bound benchmarks, e.g., lud_omp, see a larger scew in theirestimated energy usages. Itmay be necessary to, on theNVIDIA Xavier platform, use two reference frequencies
fref to address this, if the accuracy is not sufficient in practice. By using one reference frequency in the power
managed mode, e.g., fmanagedref = 1.0 GHz, and one in the full-throttle mode, e.g., f throttleref = 2.0 GHz, thenumber of profiling runs would still be significantly reduced, but may provide significantly better analysis datafor the energy resource management strategies.
The energy-estimate is important for the validation of non-functional energy requirements, however, an ad-ditional important aspect is how well the energy estimates can be used to select the most energy-efficientoperating point, by generating the energy-frequency curve as illustrated to the right in Figure 10. A good es-timation of the optimal frequency is key to ensure that the energy optimization strategies can optimize thesystem from an energy standpoint.
To evaluate this, Figure 12 shows the shape of the energy efficiency curve as approximated by the three fre-quencies used in the previous evaluation, 700MHz, 1.2 GHz, and 2.2 GHz. In the interest of readability, a rep-resentative subset of the benchmarks from the previous evaluation are shown, each with six bars. The threeleft-most bars present the measured energy usage for the benchmark at each of the evaluated frequencies,while the three right-most bars correspondingly present the estimated energy usage. The expected behavioris that the estimated energy numbers match themeasured ones, and importantly, that themost efficient mea-sured energy-efficiency can be identified also from the estimates. Only when this is the case it is possible forthe energy resource management optimizer presented in the next section to make an informed and correctdecision when optimizing for energy efficiency.

Figure 12: The estimation of the energy efficiency curves for Rodinia benchmarks, at three differentfrequencies.

The figure clearly shows that the estimated energy usage provides a good proxy for themeasured values, with-out the cost of reprofiling. For most benchmarks, the relative height of each bar matches very well betweenthe measured and estimated values – with a constant offset that matches the over-estimations discussed inconnection to the previous plots. Such constant offsets do not affect the possibility to identify themost energy-
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efficient operating point ftarget, as the relative differences between the operating points persist.
A clear deviation is shown in the backprop benchmark, which was identified already in the previous evaluationas having an incorrect t scaling factor associated with it. In Figure 12, the overly linear scaling factor, fromthe single-frame a, can be clearly distinguished from the slightly U-shaped measured numbers. As outlinedearlier in this section, we expect this benchmark to perform better once the multi-frame consideration of a isintroduced to the model, with the interval-based sampling from Extrae. As also outlined, the possibility of re-profiling until convergence (validation), implies that this mismatch will not lead to an incorrect system design,but the performance benefit of avoiding re-profilation is partially lost until the improvements to the t modelhave been implemented. In this particular case, the practical impact of the estimator incorrectly predictingthe 700 MHz operation point as the most efficient is negligible, as the energy-efficiency at 700 MHz and 1.2GHz (the actual optimum) is very small, but should not be ignored.
These results for the generation of the frequency-energy curve, as in the right of Figure 10, are promising, andthe limitations are addressable in the continuation of Task 3.2 during the next milestone. From the presentedtechniques and the resulting curve, the necessary input for the energy resource management strategies areprovided.

4.1.2. Capturing Applications Timing and Power Behavior under DVFS

This section presents a profiling suite useful to jointly characterize the timing and power profiles of a numberof applications under DVFS. Note that this tool is required to gather a comprehensive data set needed forschedulability analysis and platform optimization, and that it is planned to be integrated with the Extrae toolmentioned above. This will be useful to populate part of the AMALTHEA Trace Data Base (ATDB) mentionedin Deliverable D1.3 [5], that will end-up populating the AMALTHEA model with timing and energy annotations,needed for the platform optimization phase.
The proposed profiling suite can be used for the twofold goal of collecting meaningful data about real-timetasks execution on the target machine and later analyze said data in a second moment offline. First, the suiteis deployed on the designated embedded platform, on which it performs a set of automated profiling runs,collecting data coming from various sources (e.g., task execution time, CPU frequency, platform power con-sumption, CPU temperature, CPU counter values, and so forth). After collecting results from all the runs,another software component, typically running on a general-purpose machine, can then post-process the col-lected data, calculating statistics and converting them into a suitable format to be used in other software tools.We will henceforth refer to these two components of the profiling suite as the embedded and host componentrespectively. Both components can be easily installed and configured on Linux hosts and embedded devicesrunning Linux2.
The embedded component can perform automatically several profiling runs on the designated platform; eachrun consists of running a specific workload/application on the target machine and collecting key informationthat can characterize the exectution of that workload in several working conditions. It is especially useful tocharacterize the behavior of each individual application on the target platform, since different workloads mayexhibit diverse behaviors both with respect to DVFS [11] and to multi-core scalability, both of which are keyelements that contribute to the efficient execution of applications on embedded platforms. Indeed, usingour tools on a diverse set of embedded platforms (including a Xilinx Zynq UltraScale+ ZCU102, which is oneof the target platforms of the AMPERE project), we can show how diverse these behavior can be, both withrespect to the scalability of execution time and power consumption. Figure 13 shows some of the results ofour evaluations to emphasize this concept.
Users can easily customize the set of workloads that are profiled on each platform by editing a couple of con-figuration files. This allows for gathering data thatmore tightly represents workloads of interest. If applicationsto be profiiled need to operate on sets of data, required input files are randomly generated at the beginning
2At the moment, we successfully deployed the embedded component on two Linux distributions, Ubuntu and PetaLinux.
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(g) Raspberry Pi 4 Model B
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(h) Zynq UltraScale+ ZCU102

Figure 1. Variation of tasks execution time — (a), (b), (c), (d) — and power consumption — (e), (f), (g), (h) — when varying operating CPU frequency on
various embedded platforms and core types. All execution times are normalized with respect to the longest execution time for each workload type, usually
registered for the smallest frequency of the least powerful core on each platform. Notice that the methodology applied for power consumption estimation
varies from platform to platform.
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Figure 2. Variation of tasks execution time — (a), (b), (c), (d) — and power consumption — (e), (f), (g), (h) — when varying the number of tasks of
the same workload type running on various embedded platforms and core types. Each concurrent task is pinned to a separate core, with frequency fixed at
600MHz for all platforms. All execution times are normalized with respect to the longest execution time for each workload type, registered for the smallest
frequency of the least powerful core on each platform. The value of “0” running tasks indicates the consumption of the target platform/island when no task
is running (idle). Notice that the methodology applied for power consumption estimation varies from platform to platform.

each test run: (i) the ODROID has a TI INA231 power meter

embedded and directly connected to the power lines for each of

its CPU islands, so we read directly the power consumption

as reported by these meters; (ii) the Xilinx ZCU102 has a

TI INA226 power meter connected to the power lines of

the Processing System (PS) and Programmable Logic (PL)

part of the board, so we settled with measuring the power

consumption of the PS part, which includes the onboard CPUs;

(iii) the Raspberry has no embedded power meter, so we used

an external ODROID Smart Power Meter v3.0 connected to

the entire board power supply.

Fig. 1 shows how execution time and power consumption of

several tasks vary when changing the CPU frequency on each

platform and core type, using only one CPU core at a time. In

this figure, we show only a subset of the tasks described in sec-

tion III-A, excluding tasks specifically developed to stress the

LLC of each embedded platform (cache stress app). As we can

see, when isolated, these workloads exhibit similar timing and

Figure 13: Variation of tasks execution time — (a), (b), (c), (d) — and power consumption — (e), (f), (g), (h) —when varying operating CPU frequency on various embedded platforms and core types, for a diverse set ofworkloads. All execution times are normalized with respect to the longest execution time for each workloadtype, usually registered for the smallest frequency of the least powerful core on each platform.

of each experiment and stored in a ramfs partition, limiting interactions with disks/SD card devices to the bareminimum (storage access is not simulated).
The profiling of a platform is performed by iterating all possible system configurations, varying working condi-tions by changing:
• CPU type, if the target platform is a single-ISA heterogeneous platform, providing islands with differentkinds of CPU (e.g., ARM big.LITTLE or DynamIQ);
• CPU Operating Performance Point (OPP), i.e., frequency and voltage;
• the type of workload to be run;
• the number of concurrent instances of the selected workload to run in parallel (from none up to one perCPU).

Profiling multiple tasks on different cores simultaneously is particularly relevant because it allows for a moreaccurate representation of the system’s behaviorwhenmultiple tasks are running concurrently. Each run canberepeated automatically for a configurable number of times to improve the statistical relevance of the collectedresults.
To collect data during each task execution, a special application is run concurrently to the profiled tasks. Prefer-ably, the data collection application runs on a separate frequency island; on platforms that only have onefrequency island, preference goes to cores not involved in the current profiling run, if any. The software peri-odically samples a set of key metrics; the set of supported metrics varies from platform to platform becausedifferent devices may expose different kinds of sensors for the same metric. In general, metrics collected dur-ing each run include power consumption, the temperature of the CPU, and actual CPU frequency, which maydiffer from the one selected by the profiling tool due to thermal protection mechanisms.
The design of the data collection application is modular and easily extensible to expand its support to moreplatforms in the future. Platforms that do not ship with internal sensors for power consumption or other usefulmetrics (e.g., CPU temperature) can also be profiled using external power meters attached to the embeddedplatform itself. To collect information about the internal behavior of each task, perf is typically used, but the
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suite supports other tools, including PMCTrack3.
After completing the first phase, all data samples and logs are collected to be post-processed by the hostapplication component. The host application calculates statistics on the collected data. Output format of thisphase is currently comprised of a set of CSV format tables.
Finally, for the milestone MS3, this work will support Extrae for profiling, will be integrated to the AMALTHEAmodel, and will extend the support for the Xilinx Zynq UltraScale+ ZCU102 FPGA board.

4.2. Energy Resource Management Strategies

The main resource management strategy explored as part of MS2 is the use of statically assigned DVFS oper-ating points to tasks. This approach is the most applicable to single-criterion energy optimization because it isnon-intrusive, which preserves the separation-of-concern property of model-driven design (MDE) approaches.Thanks to the frequency-energy graph that is implicitly generated by the analysis phase, the single-criterionoptimization for DVFS operating points is straight-forward: As there are no other criteria to be optimized for,the optimal energy efficiency is achieved by configuring the task to execute at the frequency at which the en-ergy usage is lowest. This is illustrated in the right of Figure 10, where the most energy-efficient point on thecurve has been selected.
This process becomesmore interesting once additional criteria are introduced in the optimization phase, as theDVFS operation point with the minimum energy usage may not be the best trade-off with other optimizationcriteria. Using real-time properties of tasks as an illustrative example, selecting the most energy-efficient DVFSoperation point may set the system frequency too low for tasks to finish their execution within their period (orbefore their deadline). To address this, the resourcemanagement optimizer of the energy component includesthe additional constraints parameter, also shown in the right of Figure 10, which can be used to limit the rangefrom which DVFS operating points ftarget are selected. In the real-time example, the optimization may takeplace with a WCET constraints, that enforces the resource manager to consider all frequencies f for which
tf (a) exceeds the given value as non-selectable. This is illustrated in Figure 14, where the un-constrained (orsingle-criterion) optimizer in the left part selects the DVFS operating point with the lowest energy usage. Inthe right part of the figure, the red line represents the lowest possible frequency that fulfills the constraints on
tf (a) (as given by theWCET constraint), and the optimizer instead selects the DVFS operating point that fulfillsboth requirements. As such, it provides the best trade-off between energy efficiency and external optimizationcriteria. In essence, these constraings provide themechanisms throughwhich the effects of other optimizationcriterion (e.g., timing, resliency) can be evaluated, which is an important aspect of the coming MS3.
To further extend this strategy, as part of MS3 we will explore the use of online slack reclamation mecha-nisms to improve the energy efficiency based on runtime data collected by the energy monitor presented inD4.2. Slack reclamation is a technique that at runtimemonitors the constraint that caused a non-optimal DVFSoperation point to be selected. As these constraints are based on conservative estimates, e.g., a worst-caseexecution time, the average execution time is likely to be significantly shorter. If so, the constraint that causedthe non-optimal DVFS operation point to be selected no longer applies, and additional energy efficiency canbe achieved by dynamically changing the voltage/frequency to optimize for energy-efficiency. As this requirescloser integration of scheduling, timing, and energy-efficient components this task could not be started as partof the single-criterion optimization phase in MS2, but Task 3.2 still has the required time allocated as part offuture milestones.
Lastly, another technique that could potentially improve the energy-efficiency of the system is the use of re-duced precision arithmetic operations, e.g., by switching from64-bit data types to 32-bit or even smaller (downto 8-bits). Narrower data types require fewer hardware resources, reduce the switching activity, and thus theenergy usage. As part of MS2, ETHZ has explored the use of such techniques on the RISC-V research platformas adopted in the AMPERE project.
3PMCTrack website https://pmctrack-linux.github.io/.
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Figure 14: In the single-criterion optimization phase (left) the energy optimizer is free to select the DVFSoperating point with the best energy-efficiency for a task. However, in the multi-criteria optimization phase,additional constraintsmay be imposed and a different operation point selected.
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The main idea of reducing the precision is to enable SIMD-style execution of several narrower data formats atonce, using the wider architectural registers. For example, two 16-bit floats can be packed into a 32-bit regis-ter, and computed on simultaneously using a single instruction. The work utilizes and implements instructionextensions that are in line with the RISC-V standardization proposal for digital signal processing4 (DSP), whichsupports SIMD operations for reduced precision floating point operations. The ETHZ-developed RISC-V plat-form used in the project features a host processor and an accelerator of a parameterized number of simpleRISC-V cores [12]. The accelerator cores have access to a tightly coupled data memory (TCDM), acting as a L1scratchpad, providing single-cycle data access. The system further features a larger 15-cycle latency L2 cache.
ETHZ has on this RISC-V platform explored the effects of different configurations for floating point units (FPU),including support for different floating point formats, SIMD vectors, and FPU pipelining. Additionally, the ef-fects of sharing FPUs among multiple cores, to explore the energy-performance trade-off. In our experiments,we explore primarily 16- and 32-bit formats, the former of which can be executed in SIMD style by packingthem into a single register. We connect a variable number of FPUs to a variable number of cores as auxiliaryprocessing units, and arbitrate requests from different cores to each FPU using a round-robin policy. The keyinsight here is that for most workloads the density of FPU instructions is smaller than 50%, meaning that a ded-icated FPU for each core may be under-utilized, and unnecessarily drawing power while not used. Similarly,the use of narrower instructions have the aforementioned promise of reducing the overall energy needed forarithmetic operations.
The three-dimensional design space explored consists of an accelerator with either C = 8 or C = 16 cores,eitherwith C

1 , C2 , or C4 FPUs, and each configuration is evaluated eitherwith 32-bit floating point, or SIMD 16-bitfloats. The performance-energy trade-off is explored with every configuration running at 100MHz, deployedon the UltraScale+ programmable logic. The results show that for all configurations the C
4 configurations usethe least amount of energy, but interestingly, the secondbest configuration is C1 , while themiddle configuration

C
2 uses most energy. This is because lowering the amount of FPUs decreases the number of components thathave to be powered, while increasing the amount leads to each component being idlemore of the time. Due tothe more complex interconnect and arbitration logic for shared FPUs, the C

2 is not able to lower the number ofpowered components enough to offset the additional power for the arbitration. However, overall the energy-efficiency, i.e., the operations per second per watt, increases as the number of FPUs increase. This can beattributed to the reduced number of stall cycles, due to FPU sharing, which are determinental for energy-efficiency.
For reduced precision SIMD operation, the theoretical speedup that can be achieved is 2×, as two 16-bit opera-
4RISC-V Extension P, https://github.com/riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf.
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tions are computed at the same speed as one 32-bit operation. For codewith little control flow, such as convolu-tions, fast Fourier transform, andmatrixmultiplication, this speedup is also achieved in practice, althoughmorecomplex codemay experience lower or negligible speedups. The improvement in energy-efficiency largely cor-relates with the experienced speedup, as the switching activity for the operation of 2 × 16-bit SIMD and 1 ×32-bit scalars are similar, while the total number of operations is reduced.
While the number of FPUs in the system can not be affected for the host processors or the GPU, it may be usedon the FPGA. The usage of reduced precision or transprecision computing in AMPERE is yet to be determined– while automatic tools exist [13] for such transformations, it may be a task better suited for manual imple-mentation by domain experts in the runnables themselves. In such a scenario it would not require extensionsto the modeling language or the AMPERE toolchain. However, it remains an effective way to improve energy-efficiency in applications that are robust to reduction in precision, e.g., neural networks, and can be furtherexplored within the scope of the project.

4.3. Summary
In this section the analysis and the single-criterion optimization for energy-efficiency have been presented.In line with the introductory notes in Section 2, the Task Dependency Graph provides the structure, and Ex-trae the profiling information of the system, together providing the necessary input to optimize the system forenergy-efficiency at a fine granularity. The model-based estimation of the energy-frequency curve providesa low-overhead technique to generate the necessary data on which the energy-efficiency of the system canbe optimized. Furthermore, the use of constraint mechanisms provides an interface for other optimizationsto impact the solution space identified by the energy component, to enable multi-criteria optimization. Theconstraint mechanisms, it is also enables monitoring of the energy efficiency of the system and runtime opti-mization, if the constraint is not present at runtime. This technique corresponds to the predicate techniquefor observation presented for the resilience techniques. Finally, Section 4.1.2 presents a complementary tim-ing/energy charaterization approach that still needs to be integrated into the AMPERE ecosystem.
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5. Predictable Execution Models

This section presents several techniques and methodologies to provide predictable execution of tasks on het-erogeneous and parallel systems, contributing to Task 3.4. It begins by addressing the issue of memory inter-ference, followed by the general and profiling-based techniques used to provide timing information for tasksin the system. The Logical Execution Time paradigm is then presented as an overarching framework whichprovides a structured approach to addressing these two subjects. Next, techniques for probabilistic analysisof DNN workloads on FPGA are presented. Finally, a tool called DART optimizes the hardware partitioning ofreal-time tasks offloaded to an FPGA.

5.1. Predicting and Controlling Memory Interference in
Integration Platforms

We are currently witnessing an evolution in the automotive electronics architecture space owing to multiplefactors, the most prominent ones being the need for higher levels of automation, electrification and increasedconnectivity. One of the key enabling technologies in realizing these goals is the availability of high perfor-mance computing platforms that can host ever more data- and compute-intensive functions. The trend is tomove away from distributed designs, where each function is hosted on its own dedicated microcontroller-based Electronic Control Unit (ECU), towards a more centralized design where multiple functions are consol-idated onto powerful multi-core and multi-processor system-on-chip based domain/zone control units andeventually centralized vehicle computers. Applications developed by multiple vendors with varying Qualityof service (QoS) requirements, different criticalities and varying trust zones, will be co-hosted on such com-mon integration platforms. A key challenge for system designers is to design composable mechanisms on suchintegration platforms that ensure freedom from interference among different applications and allow diverseapplications to co-exist, adapt to dynamic workloads and meet their timing requirements while also utilizingthe system resources effectively.
Building such mixed-criticality integration platforms imposes new challenges for a system designer, given thatthese powerful platforms typically feature multiple processing elements, sharing some hardware resourceslike the interconnect and the main memory. As a consequence, when applications are co-deployed, inter-ference through shared resources leads to undesired application performance coupling [14] and as a result,non-negligible context-dependent execution-time variability. Composable mechanisms like reservation-basedscheduling [15] or the usage of hypervisors have been proposed to provide temporal isolation in terms of coreusage. However, especially for memory-intensive applications, interference through the memory subsystem isa primary source of variability as well as of performance bottlenecks. For instance, the work in [14] has shownthat co-hosted applications can suffer from an increase in the average (sequential) read access latency by upto 8x as compared to standalone execution due to memory interference.
In AMPERE, Bosch is currently working on mechanisms to a) upfront predict the run-time of co-running inde-pendent applications inmulti-coremicroprocessors and b) dynamically regulatememory accesses of individualcores to provide temporal isolation and reduce memory interference during runtime.
The base for the prediction are performance counter values extracted from applications executed in isolation.For prediction we use machine learning based methods to predict the performance impact of multiple ap-plications executing in parallel. To control the interference during runtime we work on a novel approach formemory interference isolation that uses a feedback control to dynamically regulate memory accesses of indi-vidual cores in a multi-core microprocessor system based on the saturation (utilization) level at the memorycontroller. Our mechanism directly regulates the source of interference by leveraging the information regard-ing the memory utilization, acquired from existing hardware performance counters provided by modern COTSmemory controllers. Details of mechansim to control memory interface will be presented in the next version
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of this deliverable.

5.1.1. Interference-Aware Runtime Prediction
One of the most notable causes of interference is the main memory subsystem, which results in significantdegradation in application performance and response time. Consequently, early run-time prediction of co-running independent applications becomes challenging in multi-core processors. Currently available tech-niques for run-time prediction like traditional cycle-accurate simulation is significantly slow, and analyticalmodels are not accurate. In contrast, existing machine-learning based approaches [16], [17], [18], [19] and[20] do not take interference into account.
We use a machine learning-based approach to address this challenge by training a model to correlate per-formance data for a set of benchmark applications between the standalone and interference scenarios. Afterthat, the trainedmodel is used to predict the performance of newer applications in interference scenarios. Wetake advantage of the hardware performance counters present inside the platform and incorporate them asfeatures into our model. In our proposed framework, samples obtained from the standalone and interferencescenarios do not satisfy simple one-to-one correspondence. To address this, we develop a simple yet effec-tive sample alignment algorithm. In addition, we systematically identify the subset of features that have thehighest positive impact on the model performance. The efficiency of our approach is validated by predictingthe average run-time of a new application and mean absolute prediction error of the model in interferencescenario while executing applications in standalone only.
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5.1.1.1. Proposed Approach

An overview of the proposed approach is shown in Figure 15 and Figure 16. The learning-based formulationof the run-time prediction of co-running applications problem consists of two phases: a training phase and a
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Table 1: Symbol table.
Symbols Descriptions

n Application executed on core n
Kn Total number of samples in app on core n
In Trace of instruction per time unit for app on core n
Cn Cycles that were required to execute In
Fn Recorded features during execution of In
xn Aligned features
i
(m)
con,n Recordedm-th sample in the trace of instruction per time unit for app on core n in caseof interference with other apps
i
(m)
pred,n Predictedm-th sample in the trace of instruction per time unit for app on core n in caseof interference with other apps
cpred,n Predicted cycles that were required to execute i(m)

pred,n

Icum,n Accumulated value

Operating System (OS)
SLIF

SRAM
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Memory Controller
Profiling Unit

DRAMDRAM
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Figure 17: System overview.

prediction phase. During the training phase, applications are profiled to extract features using System LevelInstrumentation Framework (SLIF) shown in Figure 17. In this scenario, features are instructions I , cpu-cycles
C and other hardware performance events F of an application. These features are collected during a fixedtime period t from n number of cores inside the hardware platform.
The profiling of applications is carried out in two different scenarios: standalone and interference. At first, allthe training applications are executed in standalone and their respective features are collected. In the secondscenario, the same training applications are then co-run in pairs to collect instructions icon in interferencehaving L number of total samples. This icon is then used to obtain sample aligned feature vectorX and learnan interference-aware run-time predictive model.
Finally, in the predictive phase, n arbitrary applications are executed in the standalone scenario and profiledperiodically to collect instructions I , cpu-cycles C and other hardware performance events F . Features aresample aligned and fed into the model to predict the run-time of the applications in the interference scenario.
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Algorithm 1: Sample Alignment and Interpolation functions
1 Function Sample_Alignment(In, Cn, Fn, ix,n, t):
2 cnew,n = Interpolate(Cn, In, ix,n)
3 inew,n = Interpolate(In, Cn, cnew,n + t) xn = Interpolate(Fn, In, inew,n) - Interpolate(Fn, In, ix,n)
4 return xn
5 Function Interpolate(Tn,Rn, qn):
6 WhereRn← [r(1)n ... r(Kn)n ] and Tn← [t(1)n ... t(Kn)n ]
7 Find largest α for which r(1)n + . . . + r(α)n ≤ qn
8 γn = rn−r(α)n

r
(α+1)
n −r(α)n

9 ωn = t
(α)
n × (1− γn) + t(α+1)

n × γn return ωn

5.1.1.2. Sample Alignment

Applications tend to experience delays in run-time when co-running predominantly due to interference atmemory controller. Therefore, the samples of features I , C and F that are collected in standalone scenariosand feature icon collected in interference scenarios do not have one-to-one correspondence. This is a key chal-lenge for sampling-based machine learning approaches as I ,C and F are the inputs to the learning algorithmwhereas icon is the output to be learned during training-phase. Furthermore, it is also important to keep trackof the pace of each application progress during the prediction phase as each application in interference canhave difference pace of application progress.
To solve these problems, we propose an efficient sample alignment algorithmwhich relies on the principle thattotal number of instructions remains the same irrespective of execution scenario (standalone or inference).The algorithm uses icon during the training-phase (ipred during the prediction-phase) as a feedback to keeptrack of the current section of the executing application in interference and re-adjust to the section of executingcodewhich corresponds to the samenumber of instructions in standalone. However, the alignmentwill be verycoarse grain if the adjustment is made at discrete level (sample-level). Therefore, we use linear interpolation(line 7 to 13 in Algorithm 1) to have fine grain alignment of features.
The interpolation function first takes an instantaneous feature value q to find the largest sample number α infeature vector R for which r(1)+. . . +r(α) ≤ q. Secondly, the ratio γ is calculated that tells the factor by which
q lies between the two adjacent samples that is r(α) and r(α+1). Finally, the value for other feature vector Tis calculated based on α and γ.
The sample alignment function (line 1 to 6 in Algorithm 1) in prediction phase first calculates the cpu-cycle cnewof the application in standalone that corresponds to the section of code for which the number of instructionsexecuted is ipred in interference. Since an applications can theoretically progress at max by period t in interfer-ence scenario compared to standalone scenario. We use cnew + t time to find the section of code for the nextprediction represented by inew. Finally, the feature vector x that corresponds to the section of code between
ipred and inew are computed which later are fed in the prediction model.

5.1.1.3. Interference-Aware Run-time Predictor

Algorithm 2 sketches the working of Interference-Aware Run-time Predictor in training and prediction phases.The instructions In, cpu-cycles Cn and other hardware performance events Fn per time t unit are obtainedby sampling the applications on n cores in standalone scenario, each havingKn samples. The instructions ininterference Icon,n per time t unit, obtained by co-running the same applications in pair, is the quantity to belearned during the training-phase and therefore is required in the training-phase only.
In the training-phase, we start by initializing Icum,n = 0. Icum,n basically accumulates, i(m)

con,n which is used
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Algorithm 2: Interference-Aware Run-time Predictor
1 Training Phase: input : I1, ..., In = [i(1)n ... i(Kn)n ],

C1, ..., Cn = [c(1)n ... c(Kn)n ],
F1, ..., Fn = [f (1)n ... f (Kn)n ],
Icon,1, ..., Icon,n = [i(1)con,n ... i(Ln)con,n],
t

2 foreach App n do
3 Icum,n = 0
4 form from 1 to max(L1,...,Ln) do
5 foreach App n do
6 Icum,n = Icum,n + i(m)

con,n if m ≤ Ln then
7 x

(m)
n = Sample_Alignment(In, Cn, Fn, Icum,n, t)

8 else
9 x

(m)
n = 0

10 foreach App n do
11 LAn([x(m)

1 ... x(m)
n ], i(m)

con,n)
12 Prediction Phase: input : I1, ..., In = [i(1)n ... i(Kn)n ],

C1, ..., Cn = [c(1)n ... c(Kn)n ],
F1, ..., Fn = [f (1)n ... f (Kn)n ],
t

output: cpred,n
13 foreach App n do
14 Icum,n = 0 runF lagn = true
15 m = 1 isNotDone = 1 appNotF inish = n while isNotDone do
16 foreach App n do
17 x

(m)
n = Sample_Alignment(In, Cn, Fn, Icum,n, t)

18 foreach App n do
19 i

(m)
pred,n = PMj([x(m)

1 ... x(m)
n ])

20 Icum,n = Icum,n + i(m)
pred,n

21 if Icum,n ≥ i(1)n + . . . + i(Kn)n and runF lagn then
22 cpred,n =m× t runF lagn = false appNotF inish = appNotF inish - 1
23 if appNotF inish == 0 then
24 isNotDone = 0
25 m =m + 1;

as reference for sample alignment. The sample alignment x(m)
n is performed for each application as long asthe total samples Ln of Icon,n have been aligned. Since not all application have equal number of samples and

run-time in interference scenario, x(m)
n is set to zero in case an application have finished executing (line 10 in

Algorithm 2). All the computed [x(m)
1 ... x(m)

n ] and i(m)
con,n are then fed in the learning algorithm (LA) to generate

a predictive model (PM) that learns the relationship between [x(m)
1 ... x(m)

n ] and i(m)
con,n.
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5.1.1.4. Evaluation Setup

Table 2: SB-VDS Benchmark characteristics in isolation.
Applications Avg. IPC Avg. Bandwidthmulti_ncut 0.88 450MB/sdisparity 0.50 441MB/stracking 0.59 406MB/smser 0.67 328MB/ssift 0.69 126MB/sstitch 0.90 124MB/s

We evaluate our approach on the NXP S32V234 [21] embedded platform. The SoC features 4 ARM Cortex A53[22] CPUs, organized into 2 clusters each having 2 cores. Each core has its own private L1 data and instructioncache whereas the 2 cores within a cluster share a unified L2 cache. We use two cores from two distinctclusters to perform our analysis. We sample the system using SLIF, which is implemented in Linux version 4.19as a loadable kernel module, at a fix period of 200,000 cpu-cycles.
A subset of benchmarks in the San Diego Vision Benchmark Suite (SD-VBS) [23] are used to gain insight into theplatform and evaluate the proposed approach. The input dataset for the benchmark applications is availablein nine different sizes. Since we are interested in applications that are DRAM-bound, we use the ones with thelargest input data size (named FullHD).
The characteristics of each benchmark included in our evaluations are summarized in Figure 2. Benchmarksare listed in decreasing order of average memory bandwidth usage when each benchmark runs in isolation onthe evaluation platform. Notice that the benchmarks cover a wide range of memory bandwidth usage, rang-ing from 13MB/s (texture_synthesis) up to 450MB/s (multi_ncut). We have not included the texture_synthesisbenchmarks in our evaluation given its low bandwidth requirement and therefore insignificant impact on exe-cution time due to memory contention.
Unless otherwise noted, we use multicut, mser, stitch and sift applications for training-set, and disparity andtracking for test-set in all the experiments.
5.1.1.5. Feature Engineering

The evaluation platform, comprising of ARM Cortex A53 cores [22], has 58 measurable hardware performanceevents, but provides only six 32-bit hardware performance counters and a dedicated 64-bit cycle counter. Thiscomplicatesmatters becausewe can only read 7 of the total 58 hardware performance events at any given time.This limitation is overcome by re-running the identical benchmark application, each time reading a differentset of six hardware performance events. Using SLIF and taking an average over 50 iterations leads in minimalvariation (0.5%) in observed values. As a result, the subset of measured hardware performance event valuescan be considered to correspond to each other as if they were read at the same instance.
Apart from hardware performance events inside the cores, the memory controller exposes a set of memory-mapped performance counters that report: (1) the number of DDR cycles elapsed; (2) the number of busy DDRcycles; (3) the total number of memory accesses in terms of read and (4) write; the total number of bytestransferred in (5) read and (6) write transactions.
We measured a total of 128 characteristics from the system, 64 from each core. However, incorporating allavailable features into themachine learning algorithm does not necessarily generate the best analytical model.In fact, the prediction error can become large in case of severe multicollinearity as it increases the variance ofthe regression coefficients, making them unstable. This issue of multicollinearity may also arise in our circum-stance because different features theoretically have an impact on each other. One example of such a case isnumber of branches executed is related to total number of instructions executed, which on turn have relationto L1 instruction cache access.

27



D3.2 - Single-Criterion Energy, Execution Model and ResiliencyVersion 1.0

The reduction of features is accomplished in two steps. Firstly, features reporting a value of 0 are eliminated astheir contribution to the analytical model is insignificant. We discover 26 hardware performance events withzero numeric values for all of our applications, thus they are eliminated from the feature set.
Secondly, we computed the correlation matrix using Spearman rank-order correlations of the remaining fea-tures between each other, which is a standard practice to find the level of dependency and association amongall features. On top of this computed correlation matrix, we performed hierarchical clustering and manuallyselected a threshold by visual inspection of the dendrogram (a branch diagram that represents categories) togroup our features into clusters and keep a single feature from each cluster.
For example L2 cache access, DDR busy cycles and non-cacheable external memory requests are clusteredclosely together. By visual inspection, we chose a threshold of 0.4 which results in selection of roughly onefeature per group and reducing the overall feature set to 71.
Next, we find the subset of 28 most relevant features out of 71 with 2.8% mean absolute error by using per-mutation importance [24] technique with the Ridge Linear Regression [25] method. Permutation importancecalculates the increase in themodels prediction error after permuting the feature on the training set. A featureis "important" if changing its values raises the model error, because the model depended on the feature forthe prediction.
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Figure 18: Comparison of mean absolute error for different machine learning models

Table 3: Comparison of measured and predicted total run-time of applications using the Ridge Linear Regression
Training Set Test Set Standalone (ms) Interference (ms) Predicted (ms)Core 1 Core 2 Core 1 Core 2 Core 1 Core 2 Core 1 Core 2multicut,mser, stitch, sift disparity tracking 4666 4878 5000 5000 4818 (-3.6%) 4994 (-0.1%)stitch, sift, disparity, tracking multicut mser 4912 4898 5000 5000 4981 (-0.4%) 4943 (-1.1%)disparity, tracking,multicut,mser stitch sift 4952 4985 5000 5000 4986 (-0.3%) 4997 (-0.1%)

5.1.2. Evaluation Results and Analysis
We evaluate four different linear regression models that are Ridge [25], Lasso [26], Elastic-Net [27] and LinearSupport Vector Regression (SVR) [28]. Linear SVR is basically SVR with linear kernel. Figure 18 shows meanabsolute prediction error of both the cores separately for these models. Ridge method have the minimummean absolute error of 2.8% and 2.2% for core-1 and core-2 respectively.
Table 3 shows the summary of various combination of training-set and test-set, and the corresponding run-time of the test-set in standalone scenario and interference scenario using the Ridge Linear Regression [25].
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Furthermore, Table 3 also shows the predicted run-time from Table 2. When the disparity and tracking ap-plications are executed for 4,666 ms and 4,878 ms respectively in standalone, their run-time is increased to5,000 ms during co-execution. By using the permutation importance technique along with the Ridge LinearRegression and the Interference-Aware Run-time Predictor, we are able to predict a run-time with the averagepercentage error of -3.6% and 0.1% respectively. It can be observed that the mean absolute error of core-1(diparity application) in Figure 18 is 2.8% which is less than than the average error for the same setup shown inTable 3. The reason for higher average error can be accounted for the fact that Figure 18 show prediction errorof the predictive model only, whereas Table 3 highlights the error for the complete algorithm. Even though theaverage error of the predictive model averages out to almost zero, the sample alignment function can intro-duce additional errors. This can happen as predicted instructions ipred are used to decide for the next set offeatures to be fed into the predictive model. The next sample is selected on an assumption that the programwill pace by the instructions equal to the period twhich is not always true and thus can cause additional errors.

5.2. Resource Allocation and Timing Constraints

For timing-analysis in the absence of interference, the proposed approach for timing analysis is divided in threephases: runtime performance trace extraction, timing and resource allocation analysis and model annotation.
The first phase focuses on extracting runtime information from actual program execution. The most commonmethod to determine program timing is bymeasurements, usually known asMeasurement-Based Timing Anal-ysis (MBTA). The approach is to use the actual hardware as the model for analysis. The code is deployed andexecuted in the hardware, providing different inputs, and the actual execution is measured usually by instru-menting the source code at different points. As outlined in previous sections, to obtain statistical validity,multiple executions of the code must be done, for the same set of inputs, to capture variations in executiontime.
Compared with static analysis, profiling measurements have the advantage of being performed on the actualhardware, which avoids the need to construct a hardware model and, hence, reducing the overall cost ofderiving the estimates. Another advantage is the access to multiple performance counters from the hardware[29, 30], from which metrics can be derived and can complement the performance measurements.
The state of the art of profiling tools count with several approaches that use measurement-based techniquesand determine the execution time of those paths by executing the application on the target hardware platform(or by cycle-accurate simulators) to collect execution traces. These traces are a sequence of time-stampedvalues that show which parts of the application has been executed. These tools produce performance metricsfor each part of the executed code and, by using the performance data and knowledge of the code structure,they allow to estimate the worst-case execution time of the program. Example of tools include Rapitime [31]in the commercial domain, the UpScale Analyzer in the research domain [32] and the Extrae package from theBarcelona Supercomputing Center [33].
In our approach we conduct the analysis at the Runnable level. We also divide this analysis in two parts:offline and runtime analysis. The former is applied when we use profiling information, i.e., performance tracesare obtained from runtime execution and are stored in a file/database for later processing. The latter, describedin deliverable D4.2 [34] is focused on analyzing the performance at runtime (ideally with low overhead) andsubsequently adapt the execution at runtime, e.g. by rescheduling tasks.
For the offline analysis, Extrae is used to monitor and to extract performance traces from OpenMP tasks. Thetarget code is instrumented with Extrae API instructions, which is able to extract performance traces from theprogram execution at various levels of a program. For instance, it is possible to instrument the applicationwith custom events to measure a specific code parcel. More importantly, and since our target applications areOpenMP-based, it can automatically extract performance counters information for OpenMP-related featureseven without changing the source code. This allows the analysis to be performed at the OpenMP task leveland it provides a fine-grain time analysis for a given Runnable.
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After the code is compiled and executed - or simulated - in a target hardware, runtime traces are obtained aspart of the output of the Extrae tool. The output format of Extrae is the Paraver format, a csv-like format whereeach line represent an event in the program execution. The output file of Extrae is defined as exemplified inFigure 19, where the first line represents the format of the trace. Each event is represented by the record type
2, it contains information about the cpu and thread in which the code parcel executed, and the timestampof the event. Then, a list of events are listed in a key-value format, which includes the event code thattriggered the trace and a list of zero or more performance counters. The example of Figure 19 uses a customevent (71830003) with the value 1 to indicate the beginning of a specific code parcel to be measured and thesame custom event with value 0 to indicate the end of that code parcel. This means that in the example, thesame code parcel is executed twice. The execution time is given by the difference between the final and initialevents, while the performance counter value is obtained in the final event since Extrae resets the counters atthe initial event.

record:cpu:app:task:thread:event:value (:event:value)*
2:3:1:1:3:5890126:71830003:1:42000050:0:42000059:0:42000000:0:42000002:0
2:3:1:1:3:6088987:71830003:0:42000050:3291:42000059:17775:42000000:223:42000002:826
2:3:1:1:3:6089479:71830003:1:42000050:1528:42000059:1255:42000000:13:42000002:11
2:3:1:1:3:6089775:71830003:0:42000050:1522:42000059:1021:42000000:8:42000002:4

Figure 19: Excerpt of a paraver output file generated by the Extrae tool. Three performance counters exist inthe example: total instructions (event 4200050), total cycles (event 4200059) and number of L1 and L2cache misses (4200000 and 4200002 respectively))
Timing analysis is performed with the performance traces obtained by profiling application executions instru-mented with Extrae directives. This analysis is based on WCET for each Runnable. Currently we are per-forming this analysis only considering Runnables with fully sequential code. This means that only Taskshave concurrency with Runnables potentially executing concurrently, but the code of a Runnable doesnot contain OpenMP directives. The WCET, in this case, will be the maximum time spent by a Runnable.The approach, however, is already being developed taking into account Runnableswith OpenMP directives.Here, the WCET scenario have to take into account, for each Runnable execution, the sum of all the perfor-mances of each OpenMP task executed by the Runnable, where the OpenMP task performance is the sumof all task parts pertaining to the task. We consider the sum of all performances because, despite the OpenMPtask might be executing concurrently, the worst case scenario would be to execute all the tasks sequentially.
We are currently using a basic analysis over the results, which includes the calculation of commonmetrics, suchas average, standard deviation, minimum andmaximum values. Thesemetrics are calculated per performancecounter.
As the analysis is performed for timing and resource usage, our approach extracts information from the fol-lowing performance counters, available in most common hardwares:
• Total instructions retired;
• Total of clock cycles;
• Number of L1 cache accesses/misses;
• Number of L2 cache accesses/misses;
• Number of last level cache accesses/misses.

There are other performance counters to be considered in the analysis. However, these are still being studiedto observe their relevance in the approach. The considered performance counters include:
• Branch prediction accesses/misses;
• Instruction TLB load accesses/misses;
• Data TLB load/store accesses/misses.
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The results of the analysis can then be stored in the model of the application and later used for model adap-tation or program generation reasoning. The model annotation with timing analysis is detailed in deliverableD1.3 [5].

5.3. The Logical Execution Time Paradigm

Logical Execution Time (LET) is a structured approach for reasoning about dependent tasks and their temporalinteractions. It was introduced with the time-triggered programming language Giotto [35]. It is a real-timeprogramming concept which ensures temporal determinism by decoupling computation and communication.The problem with an unconstrained communication method, i.e, allowing tasks to read and write arbitrarily isnon-determinism due to “execution jitter”. The result is highly dependent on possible interferences of othertasks executing within a tasks activation interval (say from its release to the end of its period). The effects ofthis jitter becomes more prominent in event chains, leading to large variations in end-to-end delays. The LETmodel is robust against these jitters by enforcing strict communication rules. With the LET model, tasks alwaysread data at the beginning of the activation interval and write data at the end of the activation interval asdepicted in Figure 20.
Figure 20: LET: The observed output is independent of the time a task executes in its LET interval

Using LET, the observable temporal behavior of a task is independent from its physical execution. That is ir-respective of the exact time a task executes within its execution interval, the result will be always availableonly at the end of its activation interval. LET also ensures portability, i.e, the same behavior of the tasks whenmigrated to another hardware (core), integrability on addition of newer software and interoperability, whichis verified by deterministic communication. An example is shown in Figure 21. Two tasks with different periodsare exchanging data. The timepoint when this data is written is at the end of the processing time. In the defaultcase (left side), the process p3 and p4 receive the update. At the right side of the figure, the same scenario isshown with LET semantics. Here, the data is communicated only at period boundaries. In this case, the lowerprocess communicates at the end of the period, so that always process p3 and p5 receive the new data.
Figure 21: Data communication without and with Logical Execution Time paradigm
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With LET, the end-to-end latencies in case of synchronous stimuli is always equal the sum of the periods ofthe tasks involved in the chain. However, with asynchronous stimuli it may happen that each task in the effectchain executes as early as possible in its activation window but the data arrives just after it begins execution(meaning it is operating on an older value of the data). Thus the newer data is consumed only one time periodlater. The same scenario could occur with every pair of tasks in the chain. Eventually, the worst case latency inthe case of such asynchronous arrivals is twice the sum of the periods of all the tasks in the chain.
LET thus leads to longer latencies in event chains. But on the other hand, with LET, there is no need for complexsynchronization mechanisms to handle race conditions or priority inversions, given its well-defined semantics.
With the shift from classic real-time systems on micro-controllers towards micro-processor-based integrationplatforms handling communication on shared variables across the whole system is no longer a viable option.To ease decouple the software development of the underlying hardware platform and to reuse existing soft-ware and their provided data in the development of new functionality middleware architectures like ROS andAUTOSAR Adaptive support decoupling the computation from communication. To use LET like semantics inthese systems we need to tackle the execution semantics of the underlying middleware.
For ROS2, the first steps towards a determinstic activation and LET-like execution semantics are describedin [36]. The rclc [37] executor for ROS2 allows different trigger conditions based on the availability of inputdata, e.g. the process can be activated when all data inputs are available. The executor also allows to makelocal copies of all input data when triggered. Since the synchronization of outputs is not yet implemented,LET-like semantics could be achieved with high priority gate keepers as depicted in Figure 22. The∑ elementwould only forward the data every 50 interations to ensure that the right data age is forwarded to the sensecomponent.

Figure 22: Synchronization of input data

As part of MS2, LET semantics have been investigated to ease the timing analysis, and the interference andtiming analysis techniques presented in the earlier parts of this section provide the mandatory support for thenecessary timing control. It would be in general possible to extend the LET concept to ROS2with the presentedexecutor. However, it is not certain if the AMALTHEA SLG should be extended to support LET. This could havelimited benefit as the use-cases are based on data-driven activation patterns to a large extent. Instead themain focus in the coming milestone will be on extending the deadline management support provided by thetechniques presented in the previous section, supporting LET-like execution to the level that is mandated bythe use-cases.

5.4. Analysis Techniques to support DNN workloads

FPGA-based platforms represent an attractive alternative for realizing time-predictable embedded comput-ing systems with hardware acceleration. They allow deploying energy-efficient accelerators with competitiveperformance [38] with respect to GPUs. FPGA accelerators are also more suitable for timing predictability be-cause they are often characterized by a very regular, clock-level behavior and allow for an explicit control ofthe memory traffic they generate, being the hardware design to be deployed on FPGA under the full controlof the designer. Even if commercial FPGA accelerators are typically distributed as closed-source modules, thedirect access to the hardware design allows precisely profiling and monitoring the bus traffic they generate,hence achieving an accurate characterization and supervision of their execution behavior that would be simply
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impossible with other platforms. We focused our efforts on FPGA-based acceleration of DNNs by means of theXilinx DPU accelerator, which to the best of our records is the most mature solution of this kind on the marketat the time of writing. An extensive profiling campaign focused on the Xilinx Zynq Ultrascale+ platform hasbeen conducted to study the execution behavior of the DPU by means of a DPU-specific FPGA profiler we de-veloped. Based on the profiling, we will design an execution model for the DPU and a response-time analysisbased on such model. The proposed experimental profiling is based on state-of-the-art DNNs for AdvancedDriver Assistance Systems (ADAS).

5.4.1. Background and System Architecture

5.4.1.1. FPGA SoC architecture

A typical FPGASoC architecture combines aProcessing System (PS), including oneormore processors (generallyARM-based), with a Field-Programmable Gate Array (FPGA) fabric in a single device. The processors in PSexecute software tasks (SW-tasks). The FPGA fabric can be programmed to host custom hardware devicessuch as hardware accelerators. Figure 23 illustrates a typical FPGA SoC architecture. Typically, computationsare controlled by SW-tasks, which can in turn activate the hardware accelerators when required. The hardwareaccelerators and the processors can communicate through a shared off-chip DRAM memory or an On-ChipMemory (OCM). The DRAM memory is accessed by a DRAM memory controller, embedded in PS, and sharedbetween the PS and the FPGA subsystems. This is crucial to enable high-performance, asynchronous datacommunication among hardware accelerators and processors. The communications between the PS and theFPGA subsystems are allowedby two interfaces: the FPGA-PS interface and the PS-FPGA interface. The FPGA-PSinterface exports a set of high-throughput ports allowing the access of the hardware accelerators to the devicesin PS (e.g., DRAM memory controller, OCM, peripherals). Conversely, the PS-FPGA interface exports a set ofports leveraged by the processors to access andmanage the hardware accelerators. The data movement relieson the AMBA AXI bus, which is the de-facto standard for communications in modern SoCs [39]. The bus trafficwithin the PS subsystem (e.g., originated from the processors or the devices in the FPGA fabric and directedto the DRAM controller and other peripherals in PS) is managed by a multi-level AXI-based PS interconnect.

5.4.1.2. Frameworks for DNN acceleration on FPGA SoCs

To date, most of the development and deployment efforts for DNN models rely on powerful and energy-intensive GPU-based systems. The parameters of such DNN models, such as activations, weights, and biasesare typically represented as 16-bit or 32-bit floating-point data. Due to the intrinsic differences in the architec-ture of GPU and FPGA platforms, most of the common neural networks deployed for execution on GPUs arenot compatible out-of-the-box with FPGA SoC platforms. Indeed, while in GPU-based systems neural networkscan be executed through calls to parallel computation APIs (e.g., the CUDA API in NVIDIA platforms), FPGASoC platforms require a specific hardware accelerator deployed into the FPGA fabric for the execution of DNNmodels. The academia and the industry proposed several frameworks to cope with FPGA-based accelerationof DNNs, which combine conversion tools and specialized hardware accelerators for the deployment of DNNson FPGA SoC platforms [40, 41, 42, 43]. Among such a variety of frameworks, to the best of our records themost mature one is the Vitis AI framework [43] by Xilinx.
The Vitis AI framework Vitis AI provides a collection of tools, libraries, and hardware accelerator IP cores forthe conversion and execution of GPU-like floating-point DNN models upon Xilinx FPGA SoC platforms. VitisAI supports DNN models deployed through the most mainstream neural network frameworks, such as Caffe,Tensorflow, and Pytorch. The execution of the DNN layers in Vitis AI relies on the Deep learning ProcessingUnit (DPU) core. The DPU is a hardware accelerator to be deployed into the FPGA fabric and optimized for theexecution of convolutional DNNs. A brief description of the DPU core is provided in Section 5.4.1.4. The DPU
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engine is configured by a control software application running in the PS of the FPGA SoC platform. Controlsoftware applications can be developed by leveraging the libraries provided by the Vitis AI framework.

5.4.1.3. DNN working flow with Xilinx Vitis AI

As for any framework for FPGA SoC platforms, a DNN model must undertake some process in Vitis AI beforebeing ready to be executed on the target platform. In particular, in Vitis AI this process involves a quantizationphase and a compilation phase. Such phases are performed once offline, typically on a powerful workstation.The output of such steps is a set of instructions and data for the DPU core.
Figure 23: The sample architecture of a Xilinx FPGA SoC platform deploying the DPU core in the FPGA fabric.

Preparation and quantization
The input to the Vitis AI framework is a pre-trained (GPU-like) floating-point neural networkmodel. As of today,the Vitis AI framework supports only convolutional DNN models operating on images. As a first step, the datastructure of the DNN model must be made compatible with the features of the DPU core. This means thatthe whole DNN data structures must be converted from floating-point to 8-bit fixed-point data. This process iscalled quantization and is performedby theVitis AI quantization tool. Quantization is supported by a calibrationphase, which makes use of a subset of the training images to minimize accuracy losses [43]. The output of thequantization process is the quantized DNN model. The quantized DNN model is then provided to the Vitis AIcompiler tool that parses the quantized DNN model and creates an intermediate representation of the DNN.Such an intermediate representation is then mapped to a sequence of instructions for the DPU. The Vitis AItool places the generated instructions into a .xmodel file. At this point, the Vitis AI software application thatis going to run on the target FPGA SoC platform can be built. Its development relies on the Vitis AI softwarelibraries, which contains a set of APIs for the whole operation of the DPU core. The application is then cross-compiled for the target platforms using the Xilinx cross-compilation tools.
Running on the target FPGA SoC platform
Vitis AI applications are distributed as Vitis AI images, which are based on a Petalinux1 image target for theFPGA SoC platform under analysis. Once launched, a Vitis AI application starts the configuration phase. Thisphase includes the preparation of the memory buffers in the central DRAM memory for the execution of theDPU. The application loads in DRAMmemory the instructions and the weights provided by the .xmodel file.The DPU core is then configured by the Vitis AI software application. Once the configuration is done, the VitisAI software application triggers the DPU to start the execution. At this point, the DPU is autonomous in theexecution of the DNNmodel. The Vitis AI software task is suspended until the execution of the DPU completes(the DPU will notify the processors once the execution is done by means of an interrupt signal). The DPU

1Petalinux is a Linux distribution based on Yocto and targeted to run on Zynq Ultrascale+ platforms.
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fetches the instructions, the weights, and the input image to be processed by the DNN from the DRAM bufferprepared by the Vitis AI software application. The fetching of instructions and data is performed in parallel bythe DPU core leveraging multiple memory ports.

5.4.1.4. DPU core hardware accelerator

The DPU disposes of direct access to the memory and the PS through multiple AXI interfaces. Figure 23 illus-trates a sample FPGA SoC architecture including a DPU core. With reference to the figure, S is the AXI-litesubordinate interface leveraged by the SW-tasks running in the PS for the configuration of the DPU core;M INS
is the AXI manager interface used by the DPU core for fetching the DNN instructions to be executed from theDRAM memory; andMDATA is the AXI manager interface leveraged by the DPU core for reading and writingdata from/to the DRAM memory. This latter interface is used to fetch the parameters (mainly weights) of thevarious DNN layers, to fetch the input image to be processed, to read/write intermediate results generated dur-ing DNN inference, and eventually writing the final DNN outputs. Unfortunately, the DPU core is distributedas a closed-source IP block only. To the best of records, no detailed information about its internal behavior ispublicly available.

5.4.2. Profiling the DPU

Although the DPU is a proprietary accelerator distributed as a closed-source module, it was possible to un-derstand several aspects of its execution behavior by developing a custom hardware module deployed on theFPGA fabric to perform advanced profiling of the DPU execution and memory access patterns. It is worthstressing the fact that such an advanced analysis was possible only thanks to the hardware programmabilityof FPGA SoC — the same analysis would be very difficult, if not impossible, to be conducted on commercialGPU-based SoC platforms.
To obtain precise measurements, we developed a multi-channel hardware profiler that we integrated in theXilinx Vitis AI stock hardware design (i.e., the default configuration for IPs and connections setup in the defaulthardware design providedwith the Vitis AI framework). We connected our hardware profiler to probe all of theinterfaces and ports of the DPU, such as the AXI interfaces and the interrupt line, and accurately keep track ofthe interaction of the DPUwith the DRAMmemory with the fine granularity of each clock beat. It is connectedin parallel with the stock connections, hence ensuring that the execution of the DPU is not perturbed by theprofiler.
Our hardware profiler is capable of recording the behavior of the DPU at different levels: (i) the DPUbus activityfor a given DNN model, i.e., the number of read/write transactions issued over time, their burst length, andthe corresponding amount of exchanged data, (ii) the structure of execution phases of the DPU core, (iii)the execution time of the phases and the variability of the total inference time and (iv) the identification ofpipelining among the execution phases (i.e., the time in which multiple execution phases are overlapped).
To consider a representative profiling campaign, we focused on popular state-of-the-art DNN models that arepart of modern ADAS applications: they include (i) a lane detection DNN based on a VpgNet model [44], (ii) aplate detection DNNmodel, (iii) an object detection DNNbased on a Yolov3model [45], (iv) an object detectionDNN based on an SSD model [46], and (v) a pedestrian detection DNN based on an SSD model. For each ofsuch DNN models, we recorded 1000 DPU executions (to perform inference of the network) by means of ourhardware profiler. The latest version (v1.3.2) at the time of writing of Xilinx Vitis AI was used together withthe stock Vitis AI configuration based on Petalinux [47] as provided by Xilinx. The profiling was conducted ona Xilinx ZCU102 development board equipped with the Xilinx Zynq Ultrascale+ FPGA SoC. The considered DPUarchitecture is the default one (version 3.3) provided with Vitis AI for the Zynq Ultrascale+. The DPU clock isleft to the default value of 330Mhz. All the DNNmodels under analysis operate on images. Following the stockVitis AI working flow, each execution involves the analysis of a single image and produces an output result. In
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the following, we refer to a single execution as a DPU job. During our profiling campaign, the input image foreach DPU job was randomly picked from the CityScapes dataset for ADAS applications [48].

5.4.2.1. Profiling the DPU bus activity

Table 4 reports the bus activity recorded with our hardware profiler. The columns of Table 4 report the per-jobbus activity of the DPU, in order (1) number of read transactions for instruction fetching (i.e., issued via the
M INS port), (2) data words fetched corresponding to instructions, (3) number of read transactions for dataread (i.e., issued via theMDATA port) (4) data words fetched corresponding to data read, (5) number of writetransactions for data write (6) data words written to the memory. Such results are reported for each of theDNN models under analysis.

Table 4: Profiled per-job bus activity of the DPU core for the DNN models for ADAS applications under analysis.
DNN

bus activity

Num
Instr
trans

Data
instr
words
(size)

Num
Read
trans

Data
read
words
(size)

Num
write
trans

Data
write
words
(size)

Lane Detect 17186 68744(275KB) 91939 1179184(17.99MB) 48314 424350(6.48MB)
Plate Detect 2347 9388(37KB) 7607 83027(1.27MB) 246 16960(0.3MB)
Plate Num 9872 39488(154KB) 53327 579962(8.85MB) 6075 48908(0.7MB)
Object

Detect (Yolo) 16060 64240(251KB) 84410 1011665(15.44MB) 25457 540416(8.24MB)
Object

Detect (SSD) 9920 39680(155KB) 68943 725208(11.06MB) 4705 554510(8.46MB)
Pedestrian
Detect (SSD) 11655 46620(182KB) 56597 639932(9.76MB) 5505 506096(7.72MB)

Note that, even though we performed 1000 executions, the amount of interactions with the memory changesvery little from one execution to another: we recorded changes in the order of less than 0.1% only. The busactivity of the DPU also resulted to be independent of the input image. This first observation provides a hinton the high predictability of the execution of the DPU core. Indeed, memory access and memory contentionare the major sources of unpredictability for FPGA-based accelerators — a predictable bus activity has hencea strong positive impact on the predictability of the whole system [49].
Besides the amount of data exchanged, other important features to characterize the performance and pre-dictability of the DPU core are how the data are exchanged, in other words, the parallelism of the managerportsM INS andMDATA (i.e., the number of transactions each port can have pending, also called number of out-standing transactions) and the burst length of the bus transactions. The parallelism of portsM INS andMDATA
influences the execution time of the DPU. Typically, the higher the parallelism of the port, the higher the datathroughput. Unfortunately, these numbers are not publicly disclosed by Xilinx.
Thus, we developed a specific functionality in our hardware profiler to retrieve these characteristics. We ex-perimentally found that the parallelism of the portMDATA is of 14 read outstanding transactions and 7 writeoutstanding transactions. Differently, the parallelism of theM INS port is of 2 outstanding read transactions (itis worth remembering thatM INS is used by the DPU only for reading instructions). Concerning the burst lengthof transactions, we found that the burst length of the transactions issued onMDATA varies during the DPU ex-ecution, from the minimum of one word to the maximum of 256 word for both read and write transactions– these correspond to the limits defined by the AXI standard. Differently, the burst length of the transactionsissued on theM INS port is fixed and equal to 4 words.
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Figure 24: A particular of the hardware waveform track captured using a Xilinx System ILA recording the busbehaviour of the DPU core when accelerating the Yolov3 object detection DNN for ADAS applicationsconsidered in this work.

5.4.2.2. Measuring the DPU execution phases

From the profiling we noted how the DPU has three concurrent bus activities: read instructions, read data,and write data. Each of such activities is associated with an execution time contributing to the total executiontime of a DPU job (also called inference time). Four execution phases for the DPU have been identified: (1)Read instructions phase: The instructions are fetched from the DRAM memory through the M INS port. (2)Read data phase: The DNN model data (weights, biases, activations) and the input image are fetched fromthe DRAMmemory through theMDATA port. (3)Write data phase: The results of the computation are writtento the DRAM memory through the MDATA port. (4) Elaboration phase: It is defined as the time when theDPU has not yet completed the job and no activity on the bus is performed (i.e., the hardware accelerator ismaking progress by only computing). The response time of each DPU phase has beenmeasured leveraging ourhardware profiler. For instance, to measure the execution time of the read instructions phase, our hardwareprofiler tracks the time the DPU is active on theM INS port, considering served and pending transactions. Thehardware profiler stops the profiling when the DPU interrupt is raised, locally storing the profiled values thatcan be read by software as standard memory-mapped registers. Table 5 reports the minimum, average, andmaximum recorded times for each of the DPU phases, accompanied by the measured total inference time, forthe 1000 executions under analysis.
Table 5: Measured per-job execution times of the DPU phases and total measured per-job inference times.

DNN model
inference times (ms)

Instrc
fetch

Read
data

Write
data

Pure
Elaboration

Total
Inference

Lane Detect
(VpgNet)

min 2.23 6.15 4.17 0.01 7.09avg 2.26 6.81 4.19 0.04 7.1max 2.29 7.11 4.20 0.58 7.12
Plate Detect

min 0.29 0.51 0.12 0.01 0.73avg 0.3 0.71 0.13 0.02 0.74max 0.31 0.74 0.14 0.2 0.75
Plate Num

min 1.27 2.46 0.56 0.01 3.05avg 1.28 2.99 0.57 0.02 3.06max 1.32 3.01 0.58 0.2 3.07
Object

Detection
(Yolov3 ADAS)

min 2.28 7.49 3.46 0.01 7.99avg 2.31 7.93 3.47 0.1 8.01max 2.35 8.01 3.48 0.23 8.02
Object

Detection
(SSD ADAS)

min 1.52 6.92 3.74 0.01 8.39avg 1.54 8.3 3.76 0.1 8.4max 1.56 8.4 3.77 0.7 8.41
Pedestrian
Detection
(SSD ADAS)

min 1.60 7.95 3.47 0.01 9.10avg 1.62 8.87 3.48 0.1 9.11max 1.64 9.11 3.49 0.6 9.12
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5.4.2.3. Observations

This extensive profiling campaign allows us to make some observations, which will be leveraged to design anappropriate model of the DPU with the purpose of bounding response times during DNN acceleration. Theobservations follow:
The software-DPU interactions are limited to the DPU configuration: we developed a specific functionalityin our hardware profiler to record the interactions between the Vitis AI control SW-task and the DPU duringexecution. We detected that the software-hardware interactions of the tested DNNs are limited to the config-uration phase of the DPU. This means that no software-hardware interactions are present during the executionphase (inference) of the DNN model on the DPU.
The bus activity of the DPU is constant and independent from the specific job: from the results reportedin Table 4, it emerges that the bus activity of the DPU does not vary job by job. This suggests that the DPUimplements the very same and predictable behavior given the structure of the network, the resolution of theinput image, and the size of the outputs. This also means that the amount of instructions fetched, read data,and write data is fixed and known a priori.
The DPU exhibits high parallelism in the execution of phases: by checking the results of Table 5 it is possibleto notice how, for all the tested DNNs, the results for the read data phase and the total inference time are verysimilar. Also, the sum of the read instruction phase, read data phase, and write data phase is way higher thanthe total measured inference time. Guided by this observation, we developed a specific functionality in ourhardware profiler to measure the parallel execution of (i) the instruction and write data phases of the DPU,with (ii) the DPU read data phase. The results are reported in Figure 25. The results showed how at least 97-98% of the execution of the former phases is overlapped with the one of the latter. This has been confirmedby also visually inspecting the bus activity using the Xilinx Integrated Logic Analyzer (ILA) — an excerpt of thewaveform track of the bus signals is reported in Figure 24.
From these considerations, it is possible to conclude the following: (i) the DPU executes multiple phases inparallel, hence suggesting an internal pipelined implementation (as it is common for many FPGA-based ac-celerators); and (ii) the read data phase provides the dominant contribution to the total inference time, i.e.,the instruction fetching phase and the write data phase are almost completely hidden due to the pipelinedbehavior. These conclusions motivate the definition of a series-parallel model for the DPU.
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20
40
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Figure 25: Minimum measured percentage of the total inference time for which DPU instructions operationsand write operations are overlapped with the DPU read data operations.
Limited fluctuations of response times: the results reported in Table 5 finally show how the fluctuations ofthe response times are quite limited. They are mainly attributed to the delays experienced at the memorycontroller to access the external DRAM.

5.5. Heterogeneity and Design Time Optimization for FPGA
Offloading

DART is a tool that fully automates the FPGA design flow for a real-time, dynamic partially reconfigurable(DPR) co-designed system that comprises both software and hardware components. The tool targets the Zynq
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7-series and Ultrascale+ FPGA-based SoCs by Xilinx. DART fully automates the partitioning, floorplanning, andimplementation (routing and bitstream generation) phases of the DPR flow.
In a typical co-design flow, for implementing real-time systems on a DPR-enabled FPGA-based SoC platform,the ensemble of tasks of the system are first classified into (i) software tasks, and (ii) hardware tasks. Soft-ware tasks are regular software activities executed on the CPUs available on the SoC, while hardware tasks arehardware description language (HDL) implementations of computationally-intensive functions to be offloadedon the FPGA. Figure 26 depicts a sample of a programming model supported by DART, where a software taskinvokes two hardware acceleration requests at different times. After each invocation the software task self-suspends until the acceleration request is finished. Upon receiving each acceleration request, the reconfigu-ration interface loads the bitstreams onto the FPGA and the accelerator starts to execute. At the completionof the acceleration, the software task is notified.

Figure 26: An example of a DPR-based HW-SW codesign system.

At the beginning of the design flow, the hardware tasks are logically partitioned and assigned to one or morereconfigurable regions (RRs) defined in the total FPGA area. Each RR can hostmore than one hardwaremodule,which will be executed in a time-multiplexedmanner. DART adopts a partitioning based on the timing behaviorof both software and hardware tasks of the system. The timing requirements are mapped into timing-relatedconstraints to ensure that the partitioning does not violate the timing requirements of the software and hard-ware tasks.
Figure 27 represents a block diagram of DART’s internal organization, including its inputs and outputs. DARTtakes as inputs: (i) the HDL sources of hardware tasks; (ii) the timing requirements of software tasks; and (iii)the description of the FPGA internal architecture. DART’s outputs include: (i) the bitstreams of the design; (ii)the necessary files for the FRED runtime environment2. Inside DART, the partitioning and floorplanning arecombined into a single mixed integer linear programming (MILP)-based multi-objective optimization problem.The twoDPR design stepswere fused into a single optimization problemby converting the input timing require-ments and floorplanning related constraints into a series of MILP constraints. For instance, if two hardwaretasks are partitioned on the same RR, then the RR must contain enough FPGA resources to host both of theminmutual exclusion, hence requiring themaximum of the FPGA resources requested by each hardware task foreach resource type (CLB, DRAM, DSP). At the same time, the two hardware tasks must be capable of toleratingthe delays that can be originated due to contention of the RR, i.e., in the worst case, one of the two must waitfor the entire time the other occupies the RR before being able to be dynamically configured on it.
The partitioning step inside the optimization engine of DART produces the total number of RRs and the map-ping between hardware tasks and RRs. This step takes as input the timing requirements of both the software
2FRED is described in Deliverable [34].
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and hardware tasks, as well as some FPGA-related attributes as an output. This block also produces the FREDrelated output files. The partitioning design step is implemented together with the floorplanning step. Floor-planning refers to geometrically mapping the RRs (produced by the partitioning step) on the physical FPGAfabric and it is known to be a non-trivial task due to the vast design space to be explored under a set of con-straints. The DPR floorplanning-related constraints can be classified as (i) general constraints; (ii) structuralconstraints; and (iii) resource-related constraints. General constraints are used to encode the properties ofhardware tasks and RRs as well as to describe the relationship between the two. Structural constraints areused to ensure the integrity and consistency of the RRs, in order not to violate the technological and structuralfloorplanning. Finally, resource constraints are used to pose restrictions on the resource consumption of hard-ware tasks and the resource availability inside RRs. The outputs of a floorplanning step are descriptions of theplacements of the RRs on the FPGA fabric.
Finally, DART fully automates the placement, routing, and bitstream generation design steps in the DPR designflow by utilizing a set of auto-generated Tcl scripts that interact with, and command, the vendor design tools.In addition to the FPGA bistreams of the design, DART also produces the necessary files for the FRED runtime.The runtime requires the mapping between hardware tasks and RRs, as well as additional information such asthe Linux device tree of the accelerator to execute the design. These files are produced inside DART after thecompletion of the optimization step.
Besides the DART tool, we also provide an IP design template including a standardized set of design scripts,called DART IPs, to ease the design process using the proposed DPR-based design flow. DART IPs is also arepository with a list of ready-to-use hardware IPs and static parts for DART. Appendix A.1 and A.2 includeadditional description of DART IPs.
Figure 28, page 42, presents an example of block-based of the FRED static part with three partitions. Besidesthe partitions, this design also includes the PS part, interconnect logic, and input and output decouplers foreach partition. During the FPGA reconfiguration process, the behavior of the area under reconfiguration isundefined since its logic resources may be in an inconsistent state. In particular, logic resources may pro-duce transient signals while being programmed. These signals can cause troublesome spurious transactionsin other modules, such as the AXI interconnects or the system interrupt controller. To protect the system forthese events, each reconfigurable slot is protected by a partial reconfiguration decoupler (denoted as PR de-coupler in Figure 28), a Xilinx’s library IP that binds the wires of the slot interface to safe logic values duringthe reconfiguration process [50]. Fred-Linux controls each decoupler through a single control register mappedinto the system address space through an AXI-Lite slave interface.
Table 6 shows the resource utilization report including three memcpy IPs, considering the board PYNQ-Z1(xc7z020clg400-1).
More details can be found about DART in this paper [51] and at its repository3. DART IPs is available at itsrepository4.

5.6. Summary

This section has described the fundamental problem of providing quality of service guarantees in heteroge-neous systems, and the need for composable mechanisms that promote freedom from interference. Severaltechniques have been presented to achieve this goal, and the ongoing work for controlling memory interfer-ence has been outlined. The approaches have in common that they operate on profiling information receivedby the Extrae profilier, providing a unified interface with the other sections of this deliverable. Furthermore,the analysis that promotes timing analysis is done at the granularity of the Task Dependency Graph.
Fundamentally, the Logical Execution Time paradigm promotes many of the features that are requested froma timing perspective. This paradigm has been described, with its strenghts in predictable end-to-end latencies
3DART repository https://repo.retis.sssup.it/pr_tool.4DART IPs repository https://gitlab.retis.santannapisa.it/a.amory/dart_ips/.
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Figure 27: Block diagram of the DART flow.

Site Type Used Fixed Available Util%
Slice LUTs 6009 0 53200 11.30
LUT as Logic 5548 0 53200 10.43
LUT as Memory 461 0 17400 2.65
LUT as Distributed RAM 10 0
LUT as Shift Register 451 0
Slice Registers 7986 0 106400 7.51
Register as Flip Flop 7986 0 106400 7.51
Register as Latch 0 0 106400 0.00
F7 Muxes 0 0 26600 0.00
F8 Muxes 0 0 13300 0.00
Table 6: FPGA resources used by the design.

without complex synchronization mechanisms to ensure operation on the expected data. The main researchquestion beingworked on is the integration of the LET paradigmwith the consideration needed for the AMPEREsystem, utilizing middleware architectures like ROS and AUTOSAR Adaptive. It has been shown how LET-likesemantics could be achieved with high priority gate keepers, a process that will be further refined in the ROSexecutor.
Additionally, the FPGA has been characterized from a timing predictable perspective, itsmain feature being thevery regular, clock level behaviour and predictable memory access patterns. In the context of neural networks,a careful characterization has been presented that allows introspection of closed-source IP blocks, using a cus-tom multi-channel hardware profiler. It was shown that the amount of memory interactions is stable over allmeasured parameters, and the only source of variance in the execution time can be attributed to interferenceat the memory subsystem level – motivating the need for the freedom from interference techniques. Further-more, the DART tool has been presented, which allows fully automated FPGA bitstream generation for runtimereconfiguration. DART allows timing related constraints to be used to ensure that partitioning does not violatethe real-time properties of the system.
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Figure28:FREDstaticpartblockdesignwiththreepartitions.
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6. Conclusions
This deliverable has presented the ongoing work, up to Milestone 2, of the tasks in Work Package 3. The goalof Milestone 2 has been to report on the single-criterion a) software resilient techniques for parallel execu-tion, b) energy optimisation framework, and c) predictable execution models. The meaning of single-criterionoptimization is that each individual component performs optimization with respect to its area of focus, with-out considering cross-component implications, which is the target of the coming Milestone 3. For each of theareas, the report has outlined several complementary techniques that aim to fulfill this goal:
We have shown two different and complementary approaches for software resilient techniques. The first tech-nique is based on the annotation of modeled tasks to indicate that the computation should be duplicated toprovide redundancy and cross-validation of critical tasks. The necessary adaptations in the modeling languageand programming model were outlined, and provides a compiler-assisted approach for resiliency. In additionto this, the second approach presents a programmer-in-the-loop technique, in which an external observermonitors the state of a task, by continously evaluating it against pre-defined predicates.
For energy-efficiency, this deliverable has provided a presentation and evaluation, showing how the modelinformation and profiling information is used to derive energy characteristics about the system, and presentednon-intrusive and intrusive techniques to optimize the system for energy-efficiency. As part of the single-criterion optimization, themain optimization goal has been to at low-overhead identify themost efficient DVFSoperating point for each modeled task. It has outlined several interesting directions for future optimizationsthat are enabled by co-optimizing energy-efficiency and the remaining criteria. Furthermore, it has providedan investigation into the use of transprecision, an intrusive technique, to provide significant improvenets inenergy-efficiency for tasks that are robust to lower precision arithmetics.
In the context of predictable execution models, the report has presented the main challenges for timing-predictability on heterogeneous systems, as used in AMPERE, and techniques to counteract them. The exten-sion of Logical Execution Time semantics to advanced communication middleware such as AUTOSAR Adaptiveand ROS provide the necessary infrastructure to provide predictable execution times in significantly parallelexecution environments. Furthermore, a detailed characterization of FPGA timing and execution semantics,in particular for DNN networks, have been performed, showing that the FPGA is a very predictable accelera-tor well suited for real-time acceleration. In connection to this, profile-based worst-case execution time andcross-task interference techniques have been outlined and are in ongoing development.
Taken together, the single-criterion optimization goal of the milestone has been fulfilled for each component.For each component, future directions for the work have been presented, which will be implemented as partof the next milestone. In preparation of this, all components have been aligned to operate on the same datastructures and principles. The main component is the Task Dependency Graph which provides the necessaryinput for each component, including performance counter traces provided by Extrae, which is the main inputfor the analyses. This coherency paves the way for the coming integration and multi-criteria optimizationframework, the next step for the work of Work Package 3.
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7. Acronyms and Abbreviations
CPU Central Processing Unit

D Deliverable
DAG Direct Acyclic Graph
DPR Dynamic Partial Reconfiguration

DSML Domain Specific Modeling Language
DVFS Dynamic Voltage Frequency Scaling
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
HDL Hardware Description Language
HPC High-Performance Computing
MDE Model-Driven Engineering
MILP Mixed Integer Linear Programming
MS Milestone

OCM On-Chip Memory
ODAS Obstacle Detection Avoidance System

OS Operating System
PPM Parallel Programming Model
RR Reconfigurable Region
SLG Synthetic Load Generator
T Task

TDG Task Dependency Graph
WP Work Package
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A. Appendix

The following additional textual resources are provided in this appendix:
1. A user manual for DART IPs for IP design (Section A.1);
2. A user manual for DART IPs for Static Part design (Section A.2);

A.1. Guidelines and Structure for Hardware IP Design

This section details how to use DART IPs resources to ease the design of DART and FRED compatible hardwareIPs for FPGA offloading. All IPs should follow these guidelines and this structure in order to reuse the scriptsand minimize the integration issues with DART and FRED. The rest of this section show the IP guidelines andthe structure for the two kinds of IPs: HLS and RTL.

A.1.1. HLS IPs

HLS IPs are those created from vivado_hls, based on C source code. These IPs use a different synthesis scriptand have a different directory structure, presented next.

A.1.1.1. HLS IP structure

All HLS-based IPs must have the following directory structure:
./

LICENSE
readme.md
hw

build.tcl
src

memcpy.cpp
...

tb
tb.cpp
...

sw
Makefile
src

memcpy.cpp
...

• the readme.md file documents the IP, including usage/perfomance/power reports, configuration param-eters, authors, etc;
• the file hw/build.tcl is a script synthesis for Vivado (for Verilog or VHDL sources) or for Vivado HLS (forcpp sources). This script refers to the common synthesis script located at the scripts directory, at samelevel of the IP directory;
• the sw directory must have an example FRED-enabled application to test the IP;
• the sw/Makefile compiles the example application;
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A.1.1.2. Running synthesis for the HLS IPs

Go to the directory ips/ip-name/hw and run:
$ vivado_hls build.tcl

The generated IP is located in the directory ips/ip-name/hw/ip-name/solution_0/impl/ip.

A.1.2. RTL IPs
RTL IPs are those created from vivado, based on VHDL or Verilog source code. Their directory structure ispresented next.

A.1.2.1. RTL IP structure

All RTL-based IPs must have the following directory structure:
./

build.tcl
LICENSE
README.md
hw

bd
hdl

my_module.vhd
ips
sim

tb.vhd
xdc

constraint.xdc
vivado
sw

Makefile
src

test_app.cpp
...

• the build.tcl script is set to rerun the synthesis to create a vivado design;
• use the readme.md to document the design including, for example, usage/perfomance/power reports,configuration parameters, authors;
• in the case of an IP design, the directory hw/bd is typically empty since IPs are usually described in RTLor HLS, not with BD;
• the IP description files (.vhd and/or .v) must be placed in the hw/hdl directory;
• if there is a testbench, this must be placed in the hw/sim directory. VHDL, Verilog, and SystemVerilogare accepted as testbench languages;
• if there are constraint files, these must be placed in the hw/xdc directory;
• a IP might be composed of other sub-IPs. In this case, they must be linked in the hw/ips directory. Justplace symbolic links to point to other IPs directories;
• the vivado directory must be empty. This is where the vivado design is saved;
• the sw directory must have an example FRED-enabled application to test the IP;
• the sw/Makefile compiles the example application;
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A.1.2.2. Running synthesis for the RTL IPs

Go to the directory ips/ip-name/hw and run:
$ vivado -mode batch -source build.tcl

The generated IP is located in the directory ips/ip-name/vivado/ip-name.runs/impl_1/.

A.2. Guidelines and structure for the static part of the design
The static part of the FPGA design is the part that does not suffer DPR. All static parts must follow these guide-lines and this structure in order to reuse the scripts and minimize the integration issues with DART and FRED.

A.2.1. Structure
All static parts must have the following directory structure:

./
build.tcl
LICENSE
README.md
hw

bd
design_1.tcl

hdl
ips
sim
xdc

vivado

• the build.tcl script is set to rerun the synthesis to create a vivado design;
• use the readme.md to document the design including, for example, usage/perfomance/power reports;
• the static part is typically based on a block design, thus, the BDfilemust be placed in the hw/bd directory;
• since the static part is based on block design, the hw/hdl directory, where hardware description files(.vhd and/or .v) are saved, must be empty;
• if there is a testbench, this must be placed in the hw/sim directory;
• if there are constraint files, these must be placed in the hw/xdc directory;
• the IPs under DPR must be linked in the hw/ips directory. The default IP is the memcpy IP. Just replacethe symbolic links to point to other IPs directories;
• the vivado directory must be empty. This is where the vivado design is generated.

A.2.2. Running synthesis for the static part
Go to the directory static/static-name/ and run:
$ vivado -mode batch -source build.tcl

The generated design is located in the vivado directory. The generated DCP file is located in the directorystatic/static-name/vivado/proj-name/proj-name.runs/synth_1/proj-name_wrapper.dcp.
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