
D3.4 Evaluation of multi-criteria optimizations
Version 1.0

Documentation Information

Contract Number 871669

Project Webpage https://www.ampere-euproject.eu/

Contractual Deadline 30.06.2023

Dissemination Level Public (PU)

Nature R

Authors Luis Miguel Pinho, Tiago Carvalho, Mohammad Samadi Gharajeh (ISEP)

Contributors Sara Royuela (BSC)
Tommaso Cucinotta, Francesco Paladino (SSSA), Gabriele Ara (SSSA)
Sergio Mazzola (ETHZ)

Reviewer Eduardo Quinones (BSC)

Keywords Energy-efficiency, Timing Predictability, Resilient Software, Multi-criteria Op-
timization

AMPERE project has received funding from the European Union’s Horizon 2020
research and innovation programme under the agreement No 871669.

Ref. Ares(2023)4629598 - 04/07/2023

https://www.ampere-euproject.eu/

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Change Log

Version Description Change

V0.1 Initial version with deliverable description

V0.2 Updates on Resilience

V0.3 Updates on Energy

V0.4 Updates on Multi-criteria Optimization

V0.5 Updates on Predictable Execution Models

V0.6 Updates on Resilience

V0.7 Updates on Use case evaluation

V0.8 Updates on optimization flow

V0.9 Release for revision

V1.0 Final version after revision

ii

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Table of Contents

1 Introduction . 2

2 AMPERE Non-functional Optimizations . 4
2.1 Updates on Resilient Software Techniques . 4

2.1.1 Evaluation of the replication mechanism . 5
2.2 Updates on Energy Modelling, Estimation and Optimization 7

2.2.1 API for Power & Energy Estimation . 8
2.2.2 Update to the CPU Energy Model . 9

2.3 Updates on Predictable Execution Models . 10
2.3.1 Evaluation of the Mapping Algorithms . 11

3 Multi-criteria Optimization . 15
3.1 Updates on Multi-Criteria Configuration Flow . 15

3.1.1 Profiling phase . 15
3.1.2 Optimization Phase . 18

3.2 Updates on Multi-criteria Optimization . 20
3.2.1 Validating the optimizer . 21
3.2.2 Optimizer extension to support OpenMP . 23
3.2.3 Extension to support task chains . 23

3.3 Evaluation on PCC Use Case . 23
3.3.1 Minimum power optimization . 24
3.3.2 Maximum robustness optimization . 24

3.4 Evaluation on ODAS Use Case . 27
3.5 Evaluation on ODAS Use Case Using Mapping Heuristics . 28

4 Conclusions . 33

5 Acronyms and Abbreviations . 34

6 References . 36

iii

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Executive summary

This deliverable covers the work done during the last phase of the project within WP3. The deliverable spans
9 months’ work, as defined in the Grant Agreement [1] (frommonth 34 until month 42, including the postpon-
ment as approved) to reach milestone 4 (MS4).
This Deliverable summarizes the progress of Work Package 3 up until Milestone 4, and is a report describing
the evaluation of the multi-criteria optimizatin approach (considering energy-efficiency, predictable execution
models and software resilient solutions for parallel execution).
All goals set out to be achieved by the end of Milestone 4 have been achieved, and the techniques presented
in this report are integrated in the multi-criteria optimization framework in the AMPERE ecosystem of WP6.

1

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

1 Introduction
This documents describes the deliverable D3.4. Evaluation of multi-criteria optimizations, lead by ISEP, due in
month 42, in a report format. D3.4 is part ofWP3 - Multi-criteria optimization.
This report describes the evaluation of the analyses and tools for multi-criteria optimization for the AMPERE
framework, integrated into the synthesis tool, which is provided within WP6 [2].
The tasks within Work Package 3 interact closely with components developed in Work Packages 1, 2, 4, and 5.
An overview of the interactions of WP3 is presented in Figure 1, described here for completness.

Figure 1: An overview of the interaction of Analyses and Optimization components with the other
components within AMPERE.

One of the main challenges of the AMPERE project is to enable Model Driven Engineering (MDE) of physically
entangled systems of systems, accounting for parallelism and heterogeneous in high-end embedded systems.
As such,MDE tools provide the front-end to the entire AMPERE ecosystem, and they are represented at the top-
left of the figurewhere Domain SpecificModeling Languages (DSML), e.g., AMALTHEA, AUTOSAR, CAPELLA, are
used to describe the system in a modular and composable manner, and annotated by system designers with
functional and non-functional requirements that determine how the system is generated. These are encoded
in the system model as properties of system components. In particular, AMPERE focuses on the addition of
non-functional requirement annotations that promote the automatic optimization of MDE driven systems of
systems, with respect to energy, timing guarantees, reliability, and heterogeneity. The primary DSML used in
AMPERE is AMALTHEA1, which is representative also for AUTOSAR.
Once the system has been modeled in (or converted to) AMALTHEA, the code generator generates the corre-
sponding source code, including annotations for the OpenMP parallel programming model (PPM), describing
the dependencies and parallelism exposed in the modeled system, and passed to the OpenMP compiler for
compilation into binaries. Importantly, the OpenMP compiler has been extended to not only produce the

1The AMPERE project also develops a CAPELLA to AMALTHEA bridge, to which translates CAPELLA models into their AMALTHEA
counterpart.

2

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

binary images themselves, but also structured information about the system, which is used for the optimiza-
tion phase, described in this deliverable, to ensure that the final system fulfills all requirements modeled in the
DSML. The fundamental data structure generated as part of the structured information is the Task Dependency
Graph (TDG).
The TDG provides the structure of dependencies between tasks and runnables as outlined in the DSML, as well
as additional meta-information that is used for the optimization. Additionally, the TDG contains profiling infor-
mation from the generated system, through the execution of specific profiling tools. As part of the compilation
process, the generated binary image is profiled, and the information embedded in the TDG. As such, the TDG
provides the necessary abstraction for determining themodeled requirements and dependencies of every task
in the system, as well as deep information about the behavior of each task as achieved through profiling. This
TDG is the input to the optimization phase developed in WP3, and which this deliverable reports on. Common
to all optimization components in the system is that they use the profile-based information to populate the
additional TDG members, e.g., the execution time.
The analyses and optimization phases, as developed in WP3 and evaluated in this deliverable, are highlighted
in the green boxes in Figure 1. It consists of multiple components developed in parallel: the timing analysis and
optimization, energy optimization, and scheduling. Heterogeneity and resilience techniques are implemented
at the model and compiler level, through the definition of variants (components which have multiple imple-
mentations) and replicas (for fault-tolerance). These are inserted into the TDG, and taken into consideration
by the analyses.
Returning to Figure 1, once the optimization phase has completed, it is either finished, i.e., all functional and
non-functional requirements are guaranteed to be upheld, or another round of optimization is required. The
AMPERE optimization relies on an optimization loop as reported in D2.4 [3], and additional profiling informa-
tion may be required to complete the optimization stage. This is achieved using the outcome of the optimiza-
tion stage, as shown in the figure (red arrows), which either exits the optimization loop once all optimization
components have successfully optimized the respective non-functional properties (at that point, the binary
system as compiled from the sources corresponding to the TDG is final) or require additional information, e.g.,
a new profiling run (another iteration of the optimization loop is triggered).
As the TDG is a common data structure between thework packages, it also enables a second important feature,
at the end of the optimization phase. The encoded information in the TDG allows for later use by the earlier
components in the AMPERE pipeline, such that information in the model could either be updated, or warnings
emitted to the MDE framework, and made available to the end user.
At the end of the optimization pipeline, the TDG information can also be used to inject runtime hooks and con-
figuration headers based on the optimization outcome into the generated source code. This enables actuation
and monitoring of the non-functional requirements optimized for in WP3 at runtime, in accordance with the
expressed goals of the project.
As part of Milestone 3, reported in deliverable D3.3 [4], the optimization phase considers a multi-criteria op-
timization phase, in which all components are co-operating to ensure that the system fulfills all requirements
modeled in the DSML. The remainder of this deliverable presents the updates on optimization analyses and
tools, related to deliverable D3.3 [4], and the updates on the multi-criteria approaches provided in deliverable
D2.4 [3]. These analysis and tools are then evaluated in the AMPERE use cases [5].

3

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

2 AMPERE Non-functional Optimizations

2.1 Updates on Resilient Software Techniques

The AMPERE ecosystem includes two different techniques to achieve resilience: (1) task-level parallel replica-
tion through OpenMP (based on the definition of SIL/ASIL levels in the models), and (2) dynamic monitoring
through fine-grained proactive orchestration. These mechanisms detailed in D3.3 [4], and their features are
included in demonstrator D2.3 [6].
The proactive orchestration mechanism has not changed from D3.3. On the other hand, the replication mech-
anism has evolved to include the mechanisms that were missing at MS3, i.e., (1) further types of replication
(besides spatial replication) that include temporal replication and the combination of temporal and spatial
replication, and (2) support for theMooN safety architecture specification.
#pragma omp task replicated(n, var:func [;var:func...] [, spatial|temporal|spatial_temporal])
{/*functionality to replicate*/}

, where:
• n is the number of replicas to be created (besides the original task),
• var:func is a tuple variable:function used to check the results, used by calling func with the original and
the replicated values of var as arguments, and

• spatial|temporal|spatial_temporal defines the type of replication, where spatial forces each replica and
the original task to be executed in a different processor, allowing them to run in parallel; temporal forces
each replica and the original task to be executed in mutual exclusion among them, so they have to be
sequentialized, and spatial_temporal includes both cases, i.e., each replica and the original task run in a
different processor, and no pair can run concurrently. If no type is defined, then the default behavior is
to allow parallelism between the replicas and not imposing any restriction of the executing core.

The syntax and semantics of the proposed OpenMPmechanism have been implemented in the LLVM compila-
tion framework, including support in Clang (the C/C++ frontend), LLVM (the compiler) and KMP (the OpenMP
runtime). In the extended LLVM,when a task with a replicated clause is found, n+1 tasks are created and asso-
ciated with the same task region. One of the tasks consumes the original data, while the rest consume copies
of the written data to avoid race conditions. A synchronization task is inserted after the creation of the tasks.
This task has input dependencies with all the tasks in the replication set, and inherits the output dependencies
from the original task. Afterwards, for each var : func pair, one consolidation task per replica is generated.
Consolidation tasks contain a pointer to the specified user function, which performs the comparison between
the original results and those from the replica, and returns a boolean expressing the correctness (equality) of
the results. The function must define a header with two parameters, one pointer to the original data, and one
pointer to the replicated data. See further details in D3.3 and D4.3 [7].
For spatial replication, isolation is ensured by automatically generating a unique identifier for each replication
set. This identifier is passed to the runtime to prevent any thread from executing more than one task with the
same identifier. To avoid migration of threads between cores (hence preventing one thread idle while repli-
cated tasks are still pending), the proc_bind runtime variable is used to pin threads to cores. For temporal
replication, sequentialization is enforced by adding dependencies among all tasks in the replication set.
Moreover, the proposal supports replication optimizations targeted for safety architectures. Safety architec-
tures demand a certain level of consensus to ensure fault tolerance, but usually it does not require all nodes
to agree. In this sense, the user can specify how many replicas with a correct result are required, and the
rest of replicas can be canceled before they execute, obtaining a benefit in performance. This optimization is
implemented through a new flag in Clang, where the user specifies the number of replicas to create and the
number of replicas that must have a correct result (notice that this value overwrites the number of replicas
specified in the replicated clauses). The syntax is as follows:

4

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

-fopenmp-replication-arch=MooN
, where

• N is the total number of replicas and
• M is the number of replicas required to finish correctly.

The evaluation of the task-level replication mechanism on top of an implementation provided by the Univer-
sity of Siena (UNISI) of the tracking sub-system of the ODAS use case was presented in D3.3 and derived the
following conclusions:

1. The overhead introduced by the technique highly depends on the amount of resources that are idle
while executing the non-replicated application. In the case addressed, a maximum overhead of 85%was
reached when using triple replication on the most time consuming part of the application.

2. The mechanism is suitable for detecting erroneous results, but it is not that good detecting silent errors.
An average accuracy of almost 80% is reached when inserting errors in relevant paths of execution.

3. The programmability of the technique is very good as it does not require to modify the original code and
only annotations to the OpenMP directives are needed.

2.1.1 Evaluation of the replication mechanism

This deliverable completes previous evaluations of the resiliencemechanisms presented in D3.3 [4] by (1) evalu-
ating the synthetic code generated for the AMALTHEAmodel of the PCC use casewith extensions for parallelism
and resilience, (2) completing the evaluation presented above on the real code of the tracking sub-system of
the ODAS model by testing the features extended during the last phase of the project to reach MS4 (i.e., dif-
ferent types of replication and using safety architectures), and (3) evaluating the synthetic code generated for
the AMALTHEA model of the ODAS use case with extensions for parallelism and resilience.

2.1.1.1 PCC use case

The PCC use case exposes one task with an ASIL_B tag, i.e., task_10ms_ecm from the ECM component (see
Figure 2), which calls 304 runnables of a granularity around 101µs each, and one component that can be
considered ASIL_A or ASIL_B, i.e., the ACC component. The rest of tasks have no safety constraint.

Figure 2: ASIL_B tag defined in task_10ms_ecm from the PCC use case.

Applying replication in these tasks not only increases the load of the system considerably in terms of units of
work (i.e., replicated tasks plus consolidation functions), but also, in the case of the ECM task, it forces the intro-
duction of OpenMP in a component where our previous analysis had recommended not to use inter-runnable
parallelism due to the granularity of the runnables. Consequently, the system experiences a considerable in-
crease in the execution time, that goes up to 16x for the ECMfine grained tasks when executing with 8 OpenMP
threads, as shown in Figure 3a. This is mainly due to the constant competition between the OpenMP threads

5

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

and the ROS threads managing the rest of AMALTHEA tasks. The ACC tasks, instead, do not suffer much over-
head from the replication, as they can benefit from parallel resources and have a granularity more suited to
the OpenMP runtimemanagement. The slowdown is much contained when running the ECM or the ACC com-
ponents in isolation. For the ECM case, Figure 3b shows the worse value of 2.2x slowdown is reached with 2
threads, and the minimum 1.5x is reached with 4 threads. For the ACC case, Figure3c shows the worse value of
3.2x slowdown is reached with 8 threads for the perception task. The rest experience (almost) no slowdown at
all. This opens the door to investigate additional static and runtime optimizations that could further enlighten
the overhead of the runtime and so allow for obtaining benefit out of the parallel execution even in such a fine
grained scenario.

(a) All PCC components running concurrently. (b) ECM running in isolation.

(c) ACC running in isolation.

Figure 3: Performance slowdown when replicating all runnables in task_10ms_ecm and/or the ACC
component of the PCC use case, while varying the number of threads.

2.1.1.2 ODAS use case

Real code for the tracking sub-system. The code provided by UNISI for the tracking subsystem has
been evaluation beyondD3.3with the extensions developed during the last phase of the project and presented
above. Table 1 shows hence the speedup of the tracking sub-module of the ODAS application when defining a
1oo3 safety architecture, and spatial and temporal replication, using as baseline the default replicated applica-
tion with two OpenMP threads. Only one phase is replicated at a time. As the table details, enabling the 1oo3
architecture results in an important benefit in performance, due to to not executing all the replicas. Spatial
configuration maintains the performance, since the tasks are already executed in different cores. Meanwhile,
temporal configuration forces the sequentialization of all the replicas, affecting negatively the performance

6

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

but of course enabling the detection of errors in different scenarios.

Table 1: Speedup of the tracking sub-system of the ODAS use case when using the
1oo3 safety architecture, and spatial, and temporal replication with 2 threads.

1oo3 Spatial Temporal
Predict 1,2 1 0,9

Associate 1,1 1 1
Update 1,3 1 0,7
Track 1,5 1 0,6

Synthetic code The ODAS model presents replication only in the UKF component, because it is the only
one defining a safety constraint, i.e., SIL4, as shown in Figure 5. This component executes 60 runnables that
simulate the execution of an unscented kalman filter each. Themodel defines these kernels with a workload of
20340000 ticks, which results in an execution time of 1582.26µs for the whole UKF component. This is a fine
granularity, which additionally exposes a huge amount of parallelism, as the UKF component is embarrassingly
parallel. The overhead introduced in the system due to tripling the workload and adding as many consoli-
dation functions as UKFs makes the replicated version to perform poorly when incrementing the number of
threads. The competition for resources with other ROS nodes makes the version not suitable for paralleliza-
tion. However, when isolating the UKF component, the parallelization shows performance benefits up to 2x
for 6 threads. Again, there has to be a balance between the amount of parallelism exposed and the amount
of resources available, otherwise over-subscription occurs and the overhead of handling the parallel system
defeats the benefits of the parallelization.

Figure 4: SIL4 tag defined in the UKFs task from the
ODAS use case.

Figure 5: Performance speedup of the UKF component
of the ODAS use case when replicated and running in

isolation, while varying the number of threads.

2.2 Updates on Energy Modelling, Estimation and Optimization
Energy consumption is one of the non-functionalmetrics targeted for themulti-criteria optimization in the AM-
PERE framework. AMPERE energy consumption optimization is built on top of the power models presented
in [8], and it is driven by hardware Performance Monitoring Counters (PMCs). Opposed to analog power sen-
sors, PMC-driven energy estimation can provide fine-grain, responsive, and accurate measures with negligible
performance overhead in a non-invasive and flexible way. Our methodology can support a broad range of
heterogeneous platforms with DVFS capabilities.
The deliverable D3.1 [9] already points out the rationale behind PMC-based power modeling for modern het-
erogeneous systems, and the workflow set up to obtain an accurate and lightweight power model of an ARM

7

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

CPU. The deliverable D3.2 [10] builds on top of that and explains how the devised power model can be used,
during the offline single-criterion optimization step, to optimize the energy consumption of a given task in the
AMPERE ecosystem. The deliverable D3.3 [4] refines the approach explored in the previous two deliverables,
generalizing it and validating it for the NVIDIA Jetson AGX Xavier target platform [11, 12].
This section presents thework on energy consumption estimation carried out in relation toMS4, in the context
of the offlinemulti-criteria optimization flow. In particular, the contribution described in this section is twofold:

• Application Programming Interface (API) for power and energy estimation: to allow the usage of our
energy estimates during multi-criteria optimization, we develop a flexible, scalable, and user-friendly
API easily integrated in the rest of the AMPERE ecosystem;

• Powermodel refinement for NVIDIA Jetson AGX Xavier’s CPU: we update the powermodel at the basis of
the Xavier’s CPU energy consumption estimation for integration in the multi-criteria optimization flow.

2.2.1 API for Power & Energy Estimation
The aim of energy consumption analysis in the AMPERE multi-criteria optimization flow is to obtain energy
consumption estimates for each task of a given TDG describing the target use case. The information provided
by the task-level energy estimates can subsequently be exploited to optimize the application for other non-
functional metrics, under energy constraint, or vice versa.
To allow so, we develop a user-friendly API to query our power models [4] for power and energy estimates.
Such API is scalable, as it can be easily extended to transparently provide power and energy estimates for a
broad range of platforms and their sub-systems, and flexible, as it can integrate any PMC-based power model
and supports fine-tuning.

co
nf

ig
s

po
we

r m
od

el
s

GPU

Jetson
Xavier

CPU

...

...

...

AP
I corei

power

...

... ...

...

CPU
power ...GPU

energy

sa
m

pl
e

Performance counters

Operating frequency

Sampling period

query API

core0 core1 ...

...

PMCA
PMCB

Figure 6: The structure of the API and its underlying resources. Based on the available platform drivers, i.e.,
the available power models for platforms and their sub-systems, the power and energy consumption for

different devices can be queried. The structure of the query input is also displayed.

Figure 6 shows the structure of the power and energy API and its underlying resources. The tool is Python-
based and easily extensible to support more target platforms. The support for a platform consists in a con-
figuration file, in the lowest level of Figure 6. The configuration file describes the architectural parameters of
the platform and its sub-system, along with the trained power models of each sub-system for each desired
frequency. Currently, the NVIDIA Jetson AGX Xavier is supported. The power models implementation for each
sub-system of each platform builds on top of the platform configuration. This layer (themiddle one in Figure 6)
actually employs the trained weights and the platform configuration to implement the PMC-based power es-
timation models. Energy estimates can also be provided based on the modelled power and on time measures
provided as inputs. For the Jetson Xavier, the tool currently supports power models for CPU and GPU. The
power and energy API builds on top of the power models. By providing

• the PMC samples for a sub-system of a target platform,

8

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

• the operating frequency at which the samples have been acquired,
• and the sampling period which they cover,

the API can be queried to estimate the power or energy consumption of any platform sub-system (e.g., a CPU
core, the whole CPU, a GPU, ...). The API is fully platform-independent and support for new platforms can be
added transparently and easily by extending the power models and configuration layers. The current API is
reported in the following.

• power_cpu_core_i(i: int, pmcs: dict, freq: int, sample_per: float) -> float

• power_cpu(pmcs: dict, freq: int, sample_per: float) -> float

• power_gpu(pmcs: dict, freq: int, sample_per: float) -> float

• power_soc(pmcs_cpu: dict, freq_cpu: int, pmcs_gpu: dict, freq_gpu: int,
sample_per: float) -> float

• energy_cpu_core_i(i: int, pmcs: dict, freq: int, sample_per: float) -> float

• energy_cpu(pmcs: dict, freq: int, sample_per: float) -> float

• energy_gpu(pmcs: dict, freq: int, sample_per: float) -> float

• energy_soc(pmcs_cpu: dict, freq_cpu: int, pmcs_gpu: dict, freq_gpu: int,
sample_per: float) -> float

The API is easily installed through pip and employed in any Python script through an import statement.

2.2.2 Update to the CPU Energy Model
ForMS4, the powermodels and themethodology described in the previous deliverables [9, 10, 4] were applied
to the overall multi-criteria optimization flow for validation purposes. From the integration process, it resulted
that not every performance counter required by the models trained in D3.3 [4] could be correctly retrieved by
the rest of the AMPERE toolset, in particular from Extrae, extensively used for profiling during multi-criteria
optimization. The reason of this issue has to be researched in the low-level approach that we use for PMC
samples collection, which relies on direct access to the ARM PMU registers via assembly instructions during
profiling. Extrae, on the other hand, relies on PAPI, hence itmight inherit limitations depending on PAPI’s target
platform support.

Table 2: The ten best CPU counters from platform characterization at each frequency, with their Pearson Correlation
Coefficient (PCC) with power consumption. The counters selected for the old CPU model are reported in green.

Performance
event

Frequency [MHz]
730 1190 2266

Cycles counter 0.56 0.57 0.60

Exceptions taken 0.51 0.54 0.57
Instructions retired 0.52 0.57 0.55
Floating-point activity 0.54 0.56 0.59
SIMD activity 0.50 0.52 0.52
Speculative branch 0.49 0.52 0.53
Speculative load 0.52 0.53 0.54
Speculative L/S 0.51 0.53 0.53
L1 instr. cache accesses 0.53 0.54 0.56
L1 data cache accesses n/d 0.54 n/d
Data memory accesses (read) 0.52 0.53 0.54

The results of the Jetson Xavier’s CPU platform characterization (i.e., selection of the best PMCs to model
CPU power consumption) are discussed in Section 3.2.2.1 of D3.3 [4]. For completeness, we report in Table 2

9

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

a summary of those results, highlighting the initial selection of performance counters. The issue in Extrae is
related to the counter of Exceptions taken, selected to model power consumption at 2266 MHz. As a solution,
we take the next best performance counter which Extrae is able to sample, namely the counter for Instructions
retired, and we re-train the CPU power model as discussed in D3.3 [4]. We estimate a minimal loss in accuracy
due to the fact that both counters correlate in a similar way to power consumption, as indicated by their
Pearson Correlation Coefficient (PCC).
The other power models remained unchanged, as in D3.3 [4].

2.3 Updates on Predictable Execution Models
A new version of the task to thread mapping algorithms of Gharajeh et al. [13] (as described in D3.3 [4]) have
been implemented, which improve efficiency by considering the existence of per threadmapping queues (sim-
ilar to LLVM’s default scheduler, which implements a version of thework-stealing scheduler, known to be highly
performant [14]). Figure 7 shows the main elements of the proposed mapping method, which includes two
phases: allocation and dispatching. These phases are carried out simultaneously. In the allocation phase, each
task-part from the task system is allocated to one of the thread queues, which includes both sibling and child
task-parts. In the dispatching phase, an idle thread selects a task-part from its queue and executes it.
The mapping algorithms in D3.3 [4] have therefore been instantiated for both phases. In the allocation phase,
the implemented algorithms include:

• The MNTP (Minimum Number of Task-Parts) heuristic: This algorithm selects the thread queue that
contains the minimum number of task-parts with the objective of increasing the load-balance of the
system. Since the scheduler is aware of the number of task-parts in each queue, the algorithm has
complexity of O(m), where m is number of threads.

• The NT (Next Thread) heuristic: This algorithm selects the queue of the next thread according to the last
active thread. The main objective is to balance the propagation of task-parts across all queues. Since
the scheduler knows the last active thread, the algorithm is of complexity O(1).

• The MRIT (Most Recent Idle Time) heuristic: This algorithm selects the queue with the longest idle time
(i.e., longest time without executable task-parts in the queue), with the objective of balancing the work-
load of the system by decreasing the idle time of threads. As a thread is selected using a comparison
between threads based on their longest idle time, the algorithm has complexity of O(m), where m is
number of threads.

• The MTET (Minimum Total Execution Time) heuristic: This algorithm selects the queue with the mini-
mum total execution time based on the objective of enhancing the work-balance across threads. First,
it calculates the sum of execution time of the task-parts in each queue. Then, the queue with the mini-
mum time is selected. The complexity of the algorithm is O(m*n), where m is number of threads and n
is number of task-parts.

• TheMTRT (Maximum Total Response Time) heuristic: This algorithm selects the queue that includes the
maximum total response time, with the objective of increasing data locality between tasks. However,
thiswill reduce the balance of ready jobs, and so evaluate the systemperformance against theworst-case
condition. The complexity of the algorithm is O(m*n), where m is number of threads and n is number of
task-parts.

The dispatching phase is carried out in each queue separately. A task-part is selected from the queue using
one of the following heuristic dispatching algorithms:

• TheMET (Minimum Execution Time) heuristic: This algorithm selects a task-part based on the minimum
execution time. The main goal is to achieve the work-conserving characteristic of the mapping process
by executing shorter task-parts first, and accordingly reduce the waiting time of the tasks to start. The
complexity of the algorithm is O(n), where n is the number of task-parts in the queue.

10

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Figure 7: Mapping process

• The MRT (Maximum Response Time) heuristic: This algorithm chooses the most appropriate task-part
based on the maximum response time. The purpose of this heuristic is to reduce the workload of each
queue and increase its chance of getting new task-parts. The complexity of the algorithm is O(n), where
n is the number of task-parts .

These algorithms are included in the AMPERE mapping method [15] (as described in D3.3 [4]), with different
algorithms being evaluated for static mapping when time optimization is the only criteria.

2.3.1 Evaluation of the Mapping Algorithms
The performance of the mapping methodology, using the algorithms described in the previous section, was
evaluated by simulation, under different numbers of tasks by comparing the results with those of BFS, WFS
and LNSNL [16], in terms of response time. The simulator allows to simulate the algorithms execution with
emulated time (single thread using the loop tick) or elapsed time (with multiple running threads and a clock
in a separate thread). The simulation process can be done in one or multiple iterations.
For the evaluation, random OpenMP graphs are generated following three different approaches. In system
model 1 (SM1), the simplest, there is one single parent tasks that creates concurrent child tasks (they have

11

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

no dependences among them). This model is very similar to common applications, where there are no child
tasks. In system model 2 (SM2), the graph is (potentially) very complex, as each task-part can create and have
an unlimited number of child tasks. In system model 3 (SM3), each task-part has a minimum number of child
tasks and a maximum number of child tasks. Note that it is assumed the full TDG to be known before the
mapping process and data dependencies can be defined between task-parts. Figure 8 shows three examples
for the system models with 10 tasks, where one level of nesting is used in SM1 (left), each task-part can create
an unlimited number of child tasks in SM2 (center), and each task-part creates only one child task in SM3
(right).

Figure 8: Examples of the system models applied in the mapping process

The simulation process is performed in two scenarios: (1) including overhead of the mapping process, work-
ing as an online mapping, and (2) without including overhead, working as an offline mechanism. In the first
scenario, the overhead of the mapping process is included, so it works similar to an online mapping. But in
the second scenario, the overhead of the mapping process is not included, so it works like an offline mapping.
Table 3 represents the simulation parameters with their default values. The number of task-parts for each task
is 1 in SM1, 3 in SM2, and 2 in SM3. Note that a random graph is generated at each iteration so that a random
execution time is specified for each task-part in the graph.

Table 3: Simulation parameters

12

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Evaluation was performed generating random graphs, where the number of tasks is defined by the program-
mer, while the number of task-parts for each task is determined randomly (except in the first system model,
where each task includes only one task-part). The parent-child relationship between tasks and the data de-
pendency between task-parts in the whole DAG are specified randomly. The execution time of task-parts is
specified randomly in multiple iterations, but the WCET for each task-part (calculated based on the maximum
of the random numbers) is considered in the simulation process. Moreover, the application deadline is deter-
mined randomly and the response time for each task-part is calculated based on the task-part’s execution time
and the application deadline.
In each mapping algorithm, the simulation process runs until all task-parts are dispatched to and executed by
threads. In the case with threading, the application’s runtime is determined using a clock (which is controlled
by a different thread), while in the other case, it is determined using the loop’s tick. The simulation process
for tied and untied tasks is conducted separately. Finally, the application response time, the idle and waiting
time of threads, and the number of missed deadlines are calculated at the end of the simulation. Note that the
simulations including overhead are produced using the case with threading (elapsed time), but the simulations
without including overhead are produced with the case without threading (logical time).
Figure 9 provides an example of the results of the evaluation for the systemmodel 1, considering the overhead
scenario. The simulation results show that (i) WFS works significantly worse than the others for tied tasks, (ii)
LNSNL works worse for untied tasks, and (iii) MTET-MET works very similar to BFS, both outperforming WFS
and LNSNL in most of the cases. In fact, in the majority of the scenarios, MTET-MET outperformed the other
mapping approaches.

Figure 9: Evaluation in system model 1 with overhead

Table 4 details the improvement of the proposed method, compared to the others, for tied and untied tasks
in terms of response time including overhead, where all the systemmodels are considered and the number of

13

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

threads is 4 and 8. MTET-MET outperforms BFS for SM2 and SM3, while BFS presents slightly better results for
SM1. MTET-MET also outperformsWFS, being evenmore effective for tied tasks, reducing the time up to almost
89%. Finally, compared to LNSNL,MTET-MET is better inmost of the cases, showing increased performance for
8 threads, and for untied task, reaching up to 67% gain. Overall, the proposed MTET-MET mapping algorithm
shows better results than the other methods in reducing response time when reproducing on-line scenario by
including the overhead of the mapping algorithm.

Table 4: MTET-MET compared to BFS, WFS and LNSNL methods, including overhead

Table 5 represents the improvement of the newmapping method, compared to BFS, WFS and LNSNL, in terms
of response time, when the overhead is not considered in the simulations (note that with static mapping there
is no overhead in the execution). Compared to BFS, MTET-MET works better, except for SM1, where it is slightly
worse. Compared to WFS, MTET-MET works very efficiently, especially for tied tasks, being more noticeable
for SM2 and SM3 with tied tasks. Compared to LNSNL, the efficiency of MTET-MET is better, except for SM1
with tied tasks, in which case it is similar. In summary, the proposed method works efficiently, compared to
the other methods, especially for untied tasks, in a scenario reproducing off-line behavior by disregarding the
overhead of the mapping algorithm.

Table 5: MTET-MET compared to BFS, WFS and LNSNL methods, without overhead

14

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

3 Multi-criteria Optimization

3.1 Updates on Multi-Criteria Configuration Flow

The multi-criteria flow framework aims to profile, analyse and deliver the most fitting configuration per opti-
mization criterion for a given application, to execute in a given platform. The optimized configuration includes
both application and system parameters to be optimized.
For MS4, The pipeline of the multi-criteria configuration flow was extended and adapted to include additional
components. Figure 10 depicts an overview of the multi-criteria optimization flow, abstracted to three essen-
tial components: profiling, analysis and optimization. The components were improved to better deal with
applications with multiple OpenMP parallel regions, reflected as multiple TDGs in the same TDG.json file. The
profiling component, besides some changes in the input configuration file, was extended with a compilation
phase and data extraction from amalthea models. The analysis phase kept its functionalities by using time and
energy analysis tools. The optimization loop phase was divided in two optimization branches: one optimizing
the application per optimization criterion (similar to the approach described in [3]), and another flow using
the multi-criteria optimization described in Section 3.2. Since the analysis format was maintained, this section
focus on describing the profiling and optimization phases.

code
generation

.amxmi

profiling analysis optimization Optimized
TDG

.cpp

profiling
config

config

TDG
TDG

config

TDG
TDG

Figure 10: Overview of the multi-criteria optimization flow.

3.1.1 Profiling phase
This phase was updated mainly to better deal with applications with multiple parallel regions, to retrieve in-
formation from amalthea models, and to allow code compilation at profile time.
The profiler deals with multiple versions of the same application, i.e. different combinations of the function
specializations, by executing (or simulating) the application a specified number of times (defined in the con-
figuration), with different system configurations. In terms of structure, the multiple versions share the same
TDG. The only difference among them is the specialization represented by a given node, more specifically, if
the functionality is to be executed in the CPU, GPU, FPGA, or any other accelerator device. The information re-
garding the version of each specialized functionality in the application and the instructions to setup the target
system are defined in the profiling configuration file. Figure 11 illustrates the new structure of this file, which
is now divided into three sections of properties: application, platform, and optimization.
The application section includes information regarding:

– the Amalthea model from which the application was designed; and
– the Amalthea contraint that contains the end-to-end deadline and/or task event chain constraint
– the variants, i.e., the code version information for each variant.

15

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

1 {
2 "app": {
3 "name": "TSR",
4 "amalthea_model": "./models/PCC_Jetson.amxmi",
5 "latency_constraint": "Req Deadline EC_Tsr",
6 "variants": {
7 "cpu": {
8 "dir": "./cpu_tsr",
9 "build": {
10 "dynamic_mapping": "colcon build",
11 "static_mapping": "colcon build"
12 }
13 "dots_dir": "build/amalthea_ros2_model",
14 "run": ". ./install/setup.sh && ros2 run amalthea_ros2_model TSR",
15 "iterations": 100,
16 },
17 "gpu": {
18 ...
19 }
20 }
21 },
22 "platform": {
23 "selected": "Xavier",
24 "platforms": {
25 "Xavier": {
26 "setup": "echo ’userspace’ | sudo tee /sys/.../cpu/cpufreq/policy0/scaling_governor",
27 "cpu": {
28 "cmd": [
29 "echo {frequency} | sudo tee /sys/.../cpu/cpufreq/policy0/scaling_setspeed",
30 {"OMP_NUM_THREADS": "{threads}"}
31],
32 "args": {
33 "frequency": [729600, 1190400, 2265600],
34 "threads": {
35 "start": 1,
36 "stop": 16,
37 "step": 1
38 }
39 }
40 },
41 "gpu": {...},
42 "cleanup": "echo ’ondemand’ | sudo tee /sys/.../cpu/cpufreq/policy0/scaling_governor"
43 },
44 ...
45 }
46 },
47 "optimization": { ... }
48 }

Figure 11: Sample profiling configuration file with some of the basic properties.

Each variant contains information of its location, how to compile it, where the dot files will be generated, how
to execute the compiled version, and how many times the executable shall be executed. The compilation is
divided in two properties, dynamic and static mapping, where the former is used to compile the application
using the default OpenMP scheduling algorithms, and static mapping is used to compile the application us-
ing a pre-defined mapping for each OpenMP task, for each parallel region. In the profiling phase, only the
dynamic_mapping is used, while the static_mapping will be used in a later optimization phase.
For the target system (platform), the configuration specifies how is it possible to reconfigure the system with
different parameters. More specifically, this section defines the commands to reconfigure the CPU (Line 27
of Figure 11), and any accelerator device available in the system, via the cmd attribute, where it is possible
to define (an array of) multiple commands as necessary, to obtain the desired configuration. The most rel-
evant commands are those that reconfigure the system and that affect considerably the performance of the
functionalities and, subsequently, the response time of tasks, and include the following aspects:

– the frequency, as exemplified in the command of Line 29, using as argument the value of frequency; and

16

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

– the number of OpenMP threads (in the CPU section, Lines 29 and 30), by setting the
OMP_NUM_THREADS environment variable, using as argument the value of thread.

Commands are a single element or an array of commands, that can be either a string of the command to be
executed (such as in Line 29), or a key → value object, where each key represents an environment variable
to be setted with the corresponding value (Line 30).
Commands can be parameterized through the {param_name} notation, which can be specified as: a scalar
value, an array of values (Line 33), or a range (Line 34). The profiler is responsible for testing all possible
combinations of parameter values (a configuration) and execute the program in the different setups, in the
different variants.
Finally, the optimization section contains additional information to be passed to the optimization phase, when
necessary. This section is dependent on the optimizer and, if empty, the optimizer should consider a default
configuration. An example for this section is the specification of the algorithms for the static mapping. If none
are given, then the mapping exploration will consider the all the studied algorithms (see Section 2.3).

3.1.1.1 Running the Profiler

The profiling phase is composed of one main script and depends on a set of monitoring tools included in
the AMPERE ecosystem to provide measurements from executions. The main script starts by compiling each
provided versionwith the compilation commands specified as "dynamicmapping".This will build an executable
that runs using the default dynamic task to thread mapping algorithm of OpenMP [17].
The compilation process is expected to be performed using an extended version of LLVM [18] developed by
the Barcelona Supercomputing Center (BSC). The features include the generation of OpenMP TDGs for user-
model-defined taskgraph regions. Not only the compiler generates an execute, but also, for the purpose of
AMPERE, TDGs are generated in two formats: (1) a ".dot" file containing the information of the TDG structure
and corresponding amalthea task/runnable connection, with one ".dot" file per parallel region, and (2) a ".cpp"
file with the source code of the TDGs structure to be used by the runtime. This structure includes several pa-
rameters related to the tasks, like the static thread parameter, which adds the possibility of statically mapping
OpenMP tasks to threads.
With the information of the ".dot" files, the amalthea model, and, optionally, an amalthea constraint, the
profiler generates a TDG.json file containing all the TDGs and the information retrieved from the amalthea
model. Figure 12 shows an example of a TDG.json file generated based on the configuration file in Figure 11.
Each TDG is annotated with the corresponding amalthea_task_id, extracted from the ".dot" files.
The same process is used for each node of each TDG, annotating the nodes with the corresponding
runnable_id. The amalthea model is used to annotate each TDG with the corresponding amalthea task
deadline and period, and each node is annotated with ticks and its specialization (spec property), if
the runnable can in fact be specialized (ARM/CPU by omission). Finally, one of two types of constraint
can be specified to add information regarding the Amalthea tasks and their relationship. The property
latency_constraint indicates that an Amalthea constraint of type "EventChainLatencyConstraint" ex-
ists and will provide the expected end-to-end deadline of the chain of Amalthea tasks and the name of the
"EventChain" constraint, which is the second type of constraint. The "EventChain" contains the sequence of
Tasks, thus providing the Amalthea task dependency chain. In terms of the TDG.json file, the end-to-end dead-
line is annotated as a first level property, as depicted in Figure 12, line 2, and the amalthea task chain is con-
verted into "ins" and "outs" of the related Amalthea Tasks. The decision of using "ins" and "outs" to describe
task chain order was for consistency purposes, similar to what is already done for the depencencies between
nodes.
As expected, the generated TDG.json file does not contain results or metrics. This file is in fact a template for
the profiling phase, which will be copied and populated with results while profiling the application in different
system configurations, which depends on the target platform.

17

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

1 {
2 "end_to_end_deadline": 50000000
3 "TSR": [
4 {
5 "taskgraph_id": "2067960123",
6 "amalthea_task_id": "classification_tsr",
7 "ins": ["detection_tsr"],
8 "outs": ["output_tsr"],
9 "constraints": {
10 "period": -1,
11 "deadline": 33000000
12 },
13 "metadata": {
14 "variant": "cpu",
15 }
16 "nodes": {
17 "0": {
18 "runnable_id": "classification1",
19 "spec": "ARM",
20 "ins": [],
21 "outs": ["1"],
22 "metrics": {
23 "ticks": 183936
24 },
25 "results": [],
26 },
27 ...
28 },
29 },
30 ...
31]
32 }

Figure 12: TDG.json file generated based on the application, the amalthea model, and the "Latency
Constraint" defined in Figure 11.

Next, the script is similar to the approach being used sinceWS3. It iterates over the possible system configura-
tions, which are combinations built from the CPU, and accelerator, parameters. For each system configuration,
the script first executes the system configuration commands to reconfigure both CPUand accelerator (the latter
only for the code variants that use the accelerator), and then iterates over each executable a certain number
of runs, defined in the configuration as iterations.
During the profiling of each configuration, the previously generated TDG.json file is copied and annotated with
profiling results regarding execution time and performance counter measurements and regarding the current
configuration (e.g. code_version, CPU_config, variant_config).
At the end of the profiling execution, the tool generates several TDG.json files, one per possible code version
and system configuration. These files, together with an intermediate configuration file, are the inputs for the
analysis process, which analyses each TDG file to extract metrics, and the optimization phase, which provides
the best application and system configuration based on the extracted metrics.
An intermediate configuration file is used to control the following stages of the optimization flow. This in-
termediate configuration is a configuration "specialized" to the profiled environment. It includes the path to
the generated TDG files, and their corresponding platform configuration, and inherits most of the information
present in the profiler configuration file,such as variants information, the target platform information and the
optimization section.

3.1.2 Optimization Phase
The optimization phase was divided in two branches. The first branch is an adaptation of the previously de-
signed optimization loop that comprises a recompilation of the application with a statically defined mapping,

18

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

and selects one optimized configuration per optimization criterion. The second branch uses the Multi-criteria
optimization depicted in Section 3.2, which provides a overall optimizated configuration for all optimization
criteria.
There are some main differences between these two optimization tools. While the first branch is focused on
providing an optimized configuration for each optimization criterion (i.e. one for timing and another one for
energy), the second branch provides a single configuration optimized for all the criteria. The second limitation
is that, currently, the first branch optimization tool only deals with CPU-based applications, not considering
accelerators, such as GPUs or FPGAs.

3.1.2.1 Optimization-Per-Criterion

This first optimization branch is represented in Figure 13 and consists of 4 phases: an exploration of the task to
thread static mapping algorithms, a reprofiling, a timing analysis, and finally the selection of the best configu-
rations.

config

TDG
TDG

.cpp

static
mapping
DSE

profiling analysis selection Optimized
TDG

Figure 13: Optimization flow for the single criterion optimization.

The design-space exploration of static mapping is maintained similar to the version described in MS3 [3],
and uses the same algorithms described in Section 2.3. As expected, the exploration will provide a static
mapping for each TDG of the application, by annotating each OpenMP task in the TDG with the property
static_threadwith the corresponding thread id, depicted in the mapping provided in the previous steps.
The objective of the reprofiling phase is to have measurements more specific to the static mapping defined for
each TDG. Since each task is statically mapped to a thread, the obtained performance results are much more
accurate, considering the expected execution of each task. The reprofiling phase uses the same profiler as pre-
viously described, but instead of using the "dynamic_mapping" compilation, the "static_mapping" compilation
is now used (see Line 11 of Figure 11).
In this phase, each TDG has information about the static mapping and the system configuration in which it was
executed previously. The reprofiling phase is then a loop iterating each TDG that:

1. recompiles the corresponding code variant with the provided static mapping;
2. reconfigures the system with the provided configuration;
3. measures the execution of the compiled version;
4. and redefines the TDG with the new results.

After reprofiling all the TDGs, the timing analysis and energy analysis tools are again executed, and once again
obtain timing and power/energy metrics for each task and for each TDG.
The selection phase starts by first filtering the cases of TDG.json files that do not respect all the deadline
constraints. If a single TDG does not respect the deadline, then that configuration (the TDG.json file) is not
acceptable and so it is removed from the equation. Then, the framework will provide at the end a performance
table, describing the response time (makespan) for each code version in each system configuration. Then, the
selection method between all possible configurations is based on looking at the calculated makespans. The
selected TDG.json file is the one providing the lowest cumulative value of makespans.

19

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

3.1.2.2 Multi-Criteria Optimization

Figure 14 depicts the work flow of this second branch. This branch is in fact a simple encapsulation for the
optimization framework depicted in Section 3.2. The flow provides the optimization framework with the sev-
eral TDG files, and recieves as output, from the framework, a single TDG file in which the final configuration is
defined. This TDG will contain information regarding:

• the static mapping per OpenMP task
• the specialization of OpenMP tasks
• the scheduling parameters per OpenMP region
• the selected CPU (and accelerator) frequency

The converter is responsible to take the newly annotated information and generate three files: a TDG.cpp
code file, an amalthea model, and a configuration script. The TDG.cpp file will contain information regarding
the static mapping defined per OpenMP task. The amalthea model is a copy of the referenced model, an-
notated with the scheduling parameters and runnable (OpenMP Task) specialization per amalthea task. This
means that the developer can now regenerate the code from the Amalthea model, now with information re-
garding scheduling parameters and runnable specialization. The configuration script is generated based on
the platform specification, initially defined in the profiler configuration, specializing the commands with the
system configuration defined in the TDG (e.g. the CPU/accelerator frequency and number of threads).

config

TDG
TDG

multi-
criteria

optimizer
converter

TDG.cpp

TDG

config.sh

.amxmi

Figure 14: Optimization flow using the multi-criteria optimization framework.

3.2 Updates on Multi-criteria Optimization
The developed multi-criteria optimizer [19] aims to provide the optimal placement of tasks onto processing
units (PUs) and the optimal power configuration of the hardware platform. The problem was formulated
as a mixed integer quadratically-constrained programming (MIQCP) and solved with the Gurobi commercial
tool [20].
The optimizer returns the system configuration in terms of:

• the placement of tasks onto the available PUs;
• for tasks for which both the software and a hardware-accelerated implementations are available, the
decision about whether to use the software or the hardware implementation;

• the intermediate deadline of each task, summing up to the end-to-end one given by the timing con-
straints specifications;

• the operating frequency of each of the islands of the hardware platform.
Being this a complex problem, following the multi-criteria paradigm, the optimizer provides two criteria to
determine the “optimal” configuration the designer can choose from depending on their needs. The firstmode
allows to obtain the deployment exhibiting the lowest average power consumption of the application running
on the target platform, while guaranteeing the schedulability of the whole system. The second mode instead
goes towards the system configuration that maximizes the robustness of the application, while keeping the
power consuption within a given power budget. The robustness is defined in terms of slack, i.e., the difference

20

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

between the end-to-end deadline of a DAG and its response time, normalized with the deadline. Additionally,
the two modes can be used in sequence: a first run of the optimizer can be carried out in the lowest power
consumption mode, so that to obtain the minimum power value guaranteeing meeting the timing constraints;
then, the very same problem can be solved again in the maximum robustness mode, using as power budget
the value returned by the first optimization run.
The power consumption is computed using the model in [21]. The schedulability of the task set with respect
to the timing constraints is assessed depending on the type of PU.

CPU test. When tasks are mapped to CPU cores, they are scheduled with the P-EDF algorithm with the
intermediate deadline assigned by the solver. In order for the optimizer to determine whether a task with a
given deadline is schedulable on a given CPU core, the MIQCP formulation includes constraints implementing
the schedulability test. In particular, the test computes the total utilization of the core given the current map-
ping and checks whether it is less than 1, condition that guarantees the schedulability under P-EDF. However,
given that the tasks are not independent but organized in DAGs, not all the tasks mapped to a core may run
concurrently. Hence, the schedulability test is performed using the unrelated tasks, i.e., those tasks that are
not in a dependency relationship. The test is thoroughly explained in [19].

Hardware accelerator test. The hardware accelerators (like GPUs, FPGAs) are modelled as non-
preemptive FIFO queues. In order to determinewhether an accelerated task is schedulable or not, it is required
to compute its worst-case traversing time, which considers the worst queueing time the task may undergo be-
fore being served by the accelerator. This worst-case timing happens when all the other accelerated tasks are
queued when the task arrives. More details can be found in [19].
The heuristic placement algorithms TIF and bb-search described in D2.4 [3] were only used in the prelim-
inary phases of the development of the multi-criteria optimizer and are not included in the final release of the
AMPERE project. As a matter of fact, their implementation does not provide the support for the placement of
tasks over hardware accelerators.
Also, with respect to the version of the MIQCP optimizer described in D2.4 [3], we implemented the import of
TDG files in the JSON format, required for the full integration in the AMPERE toolchain.

3.2.1 Validating the optimizer
The validation of the approach is threefold. A first evaluation consisted in the development of an alterna-
tive problem formulation identical to the MIQCP one but with the removal of the task intermediate deadlines
from the variables, thus assigning to them fixed values. These values were obtained with a deadline splitting
strategy, according to which the end-to-end DAG deadline was proportionally split over the tasks depending
on their execution time. Such an approach led us to a simpler MILP formulation. This was used as the refer-
ence/baseline performance with respect to which our full MIQCP approach was evaluated, and its advantages
assessed.
A second evaluation was carried out leveraging the simulation of the temporal behaviour of the tasks using
PARTsim [21]. PARTSim1 is a non-functional power-aware real-time systems simulator capable of simulating
the schedule of tasks within a platform under various scheduling policies, along with the associated estimated
power consumption. The simulator supports single-core andmulti-core platforms, including systemswithDVFS
capabilities, with either partitioned or global fixed-priority and EDF-based schedulers. For DVFS-capable sys-
tems, the simulator can estimate both the power consumption and the thermal profile of the platform during
the simulation. This is achieved trough platform description files that can be automatically generated using its
companion profiling tool, PARTProf [21], deployed on the target board one is willing to characterize. This tool
can extrapolate a realistic model for the power and timing behavior of real-time tasks when executed under

1More information is available at: https://github.com/gabrieleara/PARTSim.

21

https://github.com/gabrieleara/PARTSim

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

DVFS on heterogeneous architectures by profiling the execution of a set of representative tasks on the target
embedded platform.

Therefore, the platform major characteristics in terms of execution time and power consumption behavior,
gathered from the target platform using PARTProf, can be configured both in the PARTSim simulator, and in
our multi-criteria optimizer while the system is being optimized.

We used PARTSim to virtually deploy about 1700 randomly generated real-time DAG sets, each comprising
one or multiple parallel independent DAGs. These scenarios have been optimized for a target ODROID-XU4
platform. The platform description provided for the simulator by the PARTProf tool provides PARTSim with
the very same model used by each of our solvers to estimate the timing and power behavior of the systems
being optimized. Combining this model with the static configuration provided by each of our solvers, we can
accurately simulate the behavior of one or multiple DAGs as if executing on the target platform under the
desired DVFS settings and task placement.

For each scenario where our optimizer found a solution, we ran the scenario in PARTsim, checking the simu-
lated end-to-end response times and the average power consumption calculated for the simulation duration.
As expected, no simulated scenario resulted in deadline misses in the simulations, and the simulated power
consumption values matched the theoretical expectations, confirming the soundness of the approach.

The third evaluation involved experiments on a hardware platform using the AMPERE run-time, and it is de-
tailed in Deliverable D4.4 [22].

We provide below a few further details about a campaign of optimization experiments we carried out to evalu-
ate the effect of the system load on the optimal configuration found by the optimizer and to collect the run time
taken by the solver to obtain the optimum value. Figure 15 shows the variation of average power consumption
obtained by the MIQCP and MILP formulations as a function of the overall system load. It is evident and ex-
pected that the power increases with the load, because the more the computations, the more the computing
power. Furthermore, theMIQCP is generally able to find configurations exhibiting a lower power consumption
than the MILP, due to the fact that having the task intermediate deadlines as variables enlarges the solution
space, potentially containing better solutions.

 4
 4.2
 4.4
 4.6
 4.8

 5
 5.2
 5.4
 5.6

 1 1.2 1.4 1.6 1.8 2

P
ow

er
 (

W
)

Overall System Load

MIQCP
MILP

Average power consumption vs unscaled system load

Figure 15: Optimal power values as a function of the unscaled system load (X axis).

Figure 16 depicts the power consumption values obtained by both the MIQCP and the MILP and the run time
taken by the corresponding solver to produce that solution. The MILP generally requires less execution time
because the solution space to be explored is smaller than that of the MICQP.

More details about the performed simulations can be found in [19].

Figure 16 also shows that there are applications for which the MIQCP optimizer requires more than 24h to
find the optimal configuration. For such very complex cases, depending on how much time is allocated to the
design stage of the development process, this run timemight not be acceptable. Hence, the AMPERE toolchain
makes available the heuristic placement algorithms described in Section 2.3.

22

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 3.5 4 4.5 5 5.5 6 6.5 7

T
im

e
(s

)

Power (W)

MIQCP
MILP

Figure 16: Solving time (Y axis) obtained by the two optimizers (different data series) vs the achieved
optimized average power (X axis).

3.2.2 Optimizer extension to support OpenMP
Themodel presented in [19] holds for tasks organized in DAGs. We extended the optimizer to support OpenMP
tasks as used in the AMPERE project. Basically, each DAG represents a task and its nodes are runnables, exe-
cuted in parallel but still respecting the data dependencies. Each task constitutes an OpenMP parallel region,
which is assumed not to suffer from interference made by other OpenMP parallel regions possibly present in
the system, which is possible using SCHED_DEADLINE, for example (see below). Runnables in OpenMP are
served by worker threads in a FIFO fashion. The worker threads are in turn organized in OpenMP regions,
meaning that a thread of a region only serves runnables of that region.
The model extension on which the optimizer is based mandates that for every OpenMP parallel region, there
exists a worker thread for each CPU core. The optimizer is expected to provide the static mapping between
runnables andworker threads, which essentially means pinning a runnable to be served on a specific CPU core.
Furthermore, to guarantee the isolation between worker threads and between parallel regions, each worker
thread is assigned to a SCHED_DEADLINE reservation. Hence, the optimizer produces as output the parameters
of each reservation: the budget, the period and the deadline.
OpenMP runnables can still bemapped on the accelerators, but in casemore than oneOpenMP task ismapped
to the same accelerator, then we need to account for cross-interferences among tasks from different parallel
regions, which is supported anyway by our optimizer.

3.2.3 Extension to support task chains
The use cases of the AMPERE project are characterized by the presence of several tasks exchanging data, or-
ganized in chains, of which the first is periodic. Some of the other tasks in the chain may not be periodic, but
activated whenever their input data is ready.
The model in [19] only considers periodic tasks; hence, an adaptation was required. Since a data-driven task is
activated only when the data produced by a periodic task is available, the extension we developedmerges the
data-driven task with its periodic activator, thus creating a bigger periodic task. The operation can be repeated
iteratively for all the subsequent data-driven tasks. Such an approach is enabled by the fact that at least the
first task of a chain is periodic.

3.3 Evaluation on PCC Use Case
The developed optimizer was tested on the PCC use case to obtain the optimal system configuration for the
NVIDIA Jetson AGX Xavier board, made of 8 CPU cores and a GPU, and for the Xilinx UltraScale+ ZCU102. In

23

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

what follows, we describe the optimization for the NVIDIA plaftorm. Experimental runs for both platforms are
reported in Deliverable D4.4 [22].
The PCCmodel is composed of several tasks exchanging data, organized in a chain. Each of these tasks executes
a set of runnables with OpenMP, so they are parallelized. Each task has its own deadline, acting as an end-to-
end deadline for its runnables. The whole task chain has an end-to-end deadline as well, which refers to the
complete processing of data of the PCC use case.
The model was provided to the optimizer in the form of a JSON file, produced by the profiling and analysis
tools in Figure 10, which in turn performed several executions of the code auto-generated by the SLG code
generator, starting from the AMALTHEA model. The JSON file used as input to the optimizer was containing
the measurements of the execution times of each task for each PU type (CPU or GPU) for various available
frequencies, enrichedwith the performance countermeasurements, thatweremapped to power consumption
figures by the energy modeling tool (see Section 3.1).
Looking at the model, most of the tasks involved in the chain have just one or two runnables, so the OpenMP
parallelization was applied only to the task named classification_tsrmade of 10 runnables. In order
to deal with the use case, the extension described in Section 3.2.2 was used. The results of the optimization
are described in the next paragraphs.

3.3.1 Minimum power optimization
The optimizer was run in minimum power mode with the PCC use case. The resulting system configuration is
showed in Figure 17. Each node is a runnable, for which the figure reports the execution time, the intermediate
deadline and the corresponding requested computational bandwidth. Runnables are grouped into tasks, high-
lighted with different colours. The number of tasks in the picture is smaller than that of the use case because
of the task merge operation described in 3.2.3. The dependency between nodes are represented by arrows.
The picture shows the PUs of the hardware platform grouped by island. For each island, the operating fre-
quency corresponding to the requested optimal system configuration is reported. The placement of runnables
onto PUs is graphically showed by the placement of the corresponding node into the rectangle representing
the PU. For each PU, its total reserved computational bandwidth as a consequence of themapping is reported.
Also, the picture describes the pinning of OpenMP runnables onto worker threads. Each worker thread is
represented by a coloured rectangle placed inside a PU rectangle, meaning that the worker thread runs on
that specific PU. Inside each worker thread rectangle, there are the runnables pinned to that specific worker
thread. For each worker thread, the ID of the corresponding OpenMP parallel region and the parameters of
its SCHED_DEADLINE reservation are reported.
As it is evident from the figure, all the runnables weremapped to CPU cores, and the estimated average power
consumption is 1.586W. The reason behind this choice taken by the optimizer is the high power consumption
experiencedwhen activating theGPU. Indeed,mapping all the runnables onto CPU cores guarantees the lowest
power consumption. Also, both the end-to-end and task deadlines are likely to be not so tight. The schedula-
bility is guaranteed using only the slower software implementation of the tasks; hence, even if the GPU tasks
take less time to execute w.r.t. the CPU ones, they are not needed. Being the optimization metric of this ex-
periment the minimum power consumption, the solver is discouraged to use the faster hardware-accelerated
tasks to keep the power consumption low.

3.3.2 Maximum robustness optimization
Given the considerations of Section 3.3.1, the solver does not leverage the GPU tasks because of the target of
the optimization, i.e., obtaining the lowest power consumption. However, having faster hardware-accelerated
implementations of the very same tasks may be of help to obtain a more robust system, at the cost of a slightly
increased additional power consumption. Indeed, the minimum power configuration exhibits a nearly 0%

24

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

P
ow

er
=

1.
58

60
55

W

C
P

U
 (

is
la

nd
 0

)
[f

re
q:

11
90

.4
0H

z]

P
U

 0
 [

U
:0

.7
8]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 2
96

.7
9u

s
pe

ri
od

: 2
66

9.
59

us

P
U

 1
 [

U
:0

.8
4]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 3
54

.7
4u

s
pe

ri
od

: 3
02

3.
03

us
P

U
 2

 [
U

:0
.5

7]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 6
48

.8
6u

s
pe

ri
od

: 1
13

8.
85

us

P
U

 3
 [

U
:0

.5
2]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 8
66

.0
1u

s
pe

ri
od

: 1
65

6.
00

us

P
U

 4
 [

U
:0

.5
2]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 8
40

.0
6u

s
pe

ri
od

: 1
61

6.
72

us

P
U

 6
 [

U
:0

.4
9]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 5
27

.9
0u

s
pe

ri
od

: 1
36

7.
26

us

P
U

 7
 [

U
:0

.8
2]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 5
24

2.
22

us
 p

er
io

d:
 6

41
1.

25
us

n2
,0

 C
:5

82
0.

80
us

 D

:9
42

1.
28

us
 [

bw
:0

.6
2]

n2
,1

 C
:2

35
8.

02
us

 D

:4
84

3.
82

us
 [

bw
:0

.4
9]

n2
,2

 C
:1

22
2.

93
us

 D

:3
12

0.
98

us
 [

bw
:0

.3
9]

n2
,3

 C
:4

46
4.

50
us

 D

:7
68

5.
07

us
 [

bw
:0

.5
8]

n2
,4

 C
:8

45
2.

47
us

 D

:1
27

06
.4

8u
s

[b
w

:0
.6

7]

n2
,5

 C
:2

34
.3

5u
s

 D
:1

13
8.

85
us

 [
bw

:0
.2

1]

n2
,1

1
C

:1
64

.2
6u

s
 D

:2
66

9.
59

us
 [

bw
:0

.0
6]

n2
,1

2
C

:1
68

.1
7u

s
 D

:1
61

6.
72

us
 [

bw
:0

.1
0]

n1
,0

 C
:3

25
1.

63
us

 D

:4
51

7.
20

us
 [

bw
:0

.7
2]

n2
,7

 C
:1

96
.1

4u
s

 D
:3

02
3.

03
us

 [
bw

:0
.0

6]
n2

,8
 C

:1
83

.5
3u

s
 D

:1
65

6.
00

us
 [

bw
:0

.1
1]

n2
,6

 C
:1

77
.7

0u
s

 D
:6

41
1.

25
us

 [
bw

:0
.0

3]
n2

,9
 C

:1
63

.5
0u

s
 D

:1
13

8.
85

us
 [

bw
:0

.1
4]

n2
,1

0
C

:2
63

.4
7u

s
 D

:1
36

7.
26

us
 [

bw
:0

.1
9]

n2
,1

3
C

:4
46

4.
50

us

 D
:6

41
1.

25
us

 [
bw

:0
.7

0]

n0
,0

 C
:1

31
.6

2u
s

 D
:1

24
4.

10
us

 [
bw

:0
.1

1]

n2
,1

4
C

:1
66

.2
8u

s
 D

:1
36

7.
26

us
 [

bw
:0

.1
2]

Figure 17: Optimal PCC system configuration to achieve the minimum average power consumption.
25

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

P
ow

er
=

1.
58

96
23

W

C
P

U
 (

is
la

nd
 0

)
[f

re
q:

11
90

.4
0H

z]

P
U

 0
 [

U
:0

.9
4]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 2
66

.3
9u

s
pe

ri
od

: 1
10

8.
84

us

P
U

 1
 [

U
:0

.9
1]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 4
64

8.
43

us
 p

er
io

d:
 5

08
8.

11
us

P
U

 3
 [

U
:0

.3
4]

P
U

 6
 [

U
:0

.6
7]

O
pe

nM
P

en
v

0
->

 r
un

tim
e:

 2
82

.3
1u

s
pe

ri
od

: 4
21

.9
2u

s

P
U

 7
 [

U
:0

.9
5]

G
P

U
 (

is
la

nd
 1

)
[f

re
q:

62
4.

75
H

z]

P
U

 0
 [

U
:0

.1
6]

n2
,0

 C
:5

82
0.

80
us

 D

:8
32

9.
42

us
 [

bw
:0

.7
0]

n2
,1

 C
:2

35
8.

02
us

 D

:3
43

9.
27

us
 [

bw
:0

.6
9]

n2
,2

 C
:1

22
2.

93
us

 D

:1
84

0.
12

us
 [

bw
:0

.6
6]

n2
,3

 C
:6

09
.3

0u
s

 D
:3

71
4.

14
us

 [
bw

:0
.1

6]

n2
,4

 C
:8

45
2.

47
us

 D

:1
20

42
.9

0u
s

[b
w

:0
.7

0]
n2

,5
 C

:2
34

.3
5u

s
 D

:1
20

4.
75

us
 [

bw
:0

.1
9]

n2
,6

 C
:1

77
.7

0u
s

 D
:1

20
8.

82
us

 [
bw

:0
.1

5]

n2
,7

 C
:1

96
.1

4u
s

 D
:1

20
4.

75
us

 [
bw

:0
.1

6]
n2

,8
 C

:1
83

.5
3u

s
 D

:1
20

4.
75

us
 [

bw
:0

.1
5]

n2
,9

 C
:1

63
.5

0u
s

 D
:1

20
4.

75
us

 [
bw

:0
.1

4]

n2
,1

0
C

:2
63

.4
7u

s
 D

:1
20

4.
75

us
 [

bw
:0

.2
2]

n2
,1

1
C

:1
64

.2
6u

s
 D

:5
34

.6
2u

s
[b

w
:0

.3
1]

n2
,1

2
C

:1
68

.1
7u

s
 D

:1
20

4.
75

us
 [

bw
:0

.1
4]

n2
,1

3
C

:4
46

4.
50

us

 D
:5

19
2.

19
us

 [
bw

:0
.8

6]

n2
,1

4
C

:1
66

.2
8u

s
 D

:1
20

4.
75

us
 [

bw
:0

.1
4]

n0
,0

 C
:1

31
.6

2u
s

 D
:1

17
2.

33
us

 [
bw

:0
.1

1]

n1
,0

 C
:3

25
1.

63
us

 D

:3
42

2.
77

us
 [

bw
:0

.9
5]

Figure 18: Optimal PCC system configuration to achieve the maximum robustness.

26

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

slack. Hence, we run the optimizer in the maximum robustness mode, so as to investigate further interesting
trade-offs between power consumption and robustness of the resulting design.
We took as power budget that returnedby the optimization in Section 3.3.1. In order to encourage the optimizer
to deploy hardware-accelerated tasks, we decided to increase the power budget by just 5%, potentially paving
theway for amore robust configuration. The result is showed in Figure 18. The optimizermapped one runnable
on theGPU, as its faster implementation is required to achieve a 3% slack. The estimatedpower consumption of
such a configuration is 1.589W, only 0.22% bigger than the minimum power of the first optimization run. Thus,
the increase can be simply considered as a measurement noise. Nevertheless, we gain in terms of enhanced
robustness of the model w.r.t. unmodelled/unforeseen spikes in execution time estimations.

3.4 Evaluation on ODAS Use Case

Weconsidered the railway use case of the AMPERE project, namedODAS,with the aimof obtaining the optimal
system configuration for the NVIDIA Jetson AGX Xavier board.
TheODASmodel is composed of six independent tasksmade of several runnables, most of which are replicated
to guarantee a certain degree of resiliency mandated by the use case. As an example, the UKF component
contains almost 250 runnables. Replicas can be executed in parallel; hence, we considered parallelizing their
execution with OpenMP, with the additional constraint that the optimizer will not place the replicas of the
same runnable on the same PU.
A representation of the model fed to the optimizer is depicted in Figure 19, where each task is represented
as an independent periodic DAG. It is clear to see that the application is characterized by a massive runnable
replication for resiliency, causing a gigantic number of dependencies between runnables represented by arrows
in the picture.
Because of the huge size of the model and the complexity of the optimizer mode handling the isolation be-
tweenOpenMPparallel regions, we disabled the per-region reservationmechanism in order to find the optimal
placement. Even with this simplification, it was not possible to optimize the model, due to the excessively high
number of variables and constraints to be generated when preparing the optimization LP program.
A possible workaround for this use-case, is the one to transform the model into a reduced-size one, by recur-
ring to aggregation of topologically compatible elements. This way, we obtain a model that contains the same
work to be done, with some tiny runnables grouped into bigger ones, keeping the same timing, topological/de-
pendency and reliability constraints as in the original model. Such an approach makes sense, because in the
case of the ODAS use-case, we have about 60 runnables in the UKF DAG of the model, representing as many
Kalman filters that need to track many possible subjects moving through the scene. These computations need
to be carried out reliably, thus multiplying by 3x the number of nodes in the model to optimize, considering
the replicated nodes. However, the number of CPUs available on the board is only 8 (plus the GPU), therefore
it makes sense to aggregate several of these Kalman filter operations, when having no reciprocal anti-affinity
constraints, into a single sequential runnable. For example, even with a reduction of a factor of 4, we would
end-upwith 60*3/4=45 bigger runnables (equivalent to the 180 original tiny ones) that can still be spread quite
well across the available 8 CPUs, and are way more manageable from an optimization perspective. A prelim-
inary feature performing such model reduction/transformation has been incorporated into our MIQCP-based
multi-criteria optimization tool, obtaining for example the model in Figure 20.
This transformed reduced-size model was optimized for minimum power in about 8 hours of computations,
obtaining the optimized placement reported in Figure 21.
It is worth to note that the optimizer used solely the CPU cores of the platform, leaving the GPU unused (vis-
ible in the bottom-right corner of Figure 21), for three main reasons: the high workload of the application,
challenging the overall schedulability; the presence of numerous replicas, constraining the optimizer to map
replicated runnables to different PUs; and finally the higher power consumption involved when deploying ker-
nels on the GPU, compared to the execution of equivalent code on the CPU(s) of the board. The CPU frequency

27

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

n0,0

n0,3

n0,1

n0,2

n0,4

n0,5

n0,6

n0,7

n0,8

n0,9

n0,10

n0,11
n0,12

n1,0

n1,3

n1,1

n1,2

n1,4

n2,0

n2,3

n2,1

n2,2

n2,4

n2,5

n2,6

n2,7

n2,8

n2,9

n2,10

n2,11
n2,12

n3,0 n3,1

n4,0

n4,3

n4,1

n4,2

n4,4

n4,5

n4,6

n4,8

n4,9

n4,10

n4,12

n4,13

n4,14

n4,16

n4,17

n4,18

n4,20

n4,21

n4,22

n4,24

n4,25

n4,26

n4,28

n4,29

n4,30

n4,32

n4,33

n4,34

n4,36

n4,37

n4,38

n4,40

n4,41

n4,42

n4,44

n4,45

n4,46

n4,48

n4,49

n4,50

n4,52

n4,53

n4,54

n4,56

n4,57

n4,58

n4,60

n4,61

n4,62

n4,64

n4,65

n4,66

n4,68

n4,69

n4,70

n4,72

n4,73

n4,74n4,76 n4,77
n4,78

n4,80

n4,81

n4,82

n4,84

n4,85

n4,86

n4,88

n4,89

n4,90

n4,92

n4,93

n4,94

n4,96

n4,97

n4,98

n4,100

n4,101

n4,102

n4,104

n4,105

n4,106

n4,108

n4,109

n4,110

n4,112

n4,113

n4,114

n4,116

n4,117

n4,118

n4,120

n4,121

n4,122

n4,124

n4,125

n4,126

n4,128

n4,129

n4,130

n4,132

n4,133

n4,134

n4,136

n4,137

n4,138

n4,140

n4,141

n4,142

n4,144

n4,145

n4,146

n4,148

n4,149

n4,150

n4,152

n4,153

n4,154

n4,156

n4,157

n4,158

n4,160

n4,161

n4,162

n4,164

n4,165

n4,166

n4,168

n4,169

n4,170

n4,172

n4,173

n4,174

n4,176

n4,177

n4,178

n4,180

n4,181

n4,182

n4,184

n4,185

n4,186

n4,188

n4,189

n4,190

n4,192

n4,193

n4,194

n4,196

n4,197

n4,198

n4,200

n4,201

n4,202

n4,204

n4,205

n4,206

n4,208
n4,209

n4,210
n4,212 n4,213 n4,214

n4,216
n4,217

n4,218

n4,220

n4,221

n4,222

n4,224

n4,225

n4,226

n4,228

n4,229

n4,230

n4,232

n4,233

n4,234

n4,236

n4,237

n4,238

n4,240

n4,241

n4,242

n4,245

n4,7

n4,11

n4,15

n4,19

n4,23

n4,27

n4,31

n4,35

n4,39

n4,43

n4,47

n4,51

n4,55

n4,59

n4,63

n4,67

n4,71

n4,75

n4,79

n4,83

n4,87

n4,91

n4,95

n4,99

n4,103

n4,107

n4,111

n4,115

n4,119

n4,123

n4,127

n4,131

n4,135

n4,139

n4,143

n4,147

n4,151

n4,155

n4,159

n4,163n4,167

n4,171

n4,175

n4,179

n4,183

n4,187

n4,191

n4,195

n4,199

n4,203

n4,207

n4,211 n4,215

n4,219

n4,223

n4,227

n4,231

n4,235

n4,239

n4,243

n4,244

n5,0

n5,3

n5,1

n5,2

n5,4

n5,5

n5,6

n5,7

n5,8

n5,9

n5,10

n5,11
n5,12

Figure 19: ODAS model fed to the optimizer.

has been set to the intermediate one, 1190.4 MHz. This optimized configuration results into an estimated av-
erage power consumption of 3.51W. Executing repeatedly the resulting configuration on the NVIDIA Jetson
AGX platform using the tools described in D4.4 [22] results in no missed deadlines. Table 6 shows average and
maximum registered response times for each task when executed on the target platform.

3.5 Evaluation on ODAS Use Case Using Mapping Heuristics

As an alternative to the aggregation solution, we also evaluated the ODAS use case with an approach that
explores OpenMP task-to-thread mappings using heuristics, suitable for the cases where the multi-criteria
optimizer is not able to scale. This approach is able to provide two optimized configurations, one for response
time and another for energy, based on the first optimization branch of section 3.1.

28

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

DAG 0 - E2E deadline=92.00 ms

DAG 1 - E2E deadline=100.00 ms

DAG 2 - E2E deadline=100.00 ms

DAG 3 - E2E deadline=100.00 ms

DAG 4 - E2E deadline=100.00 ms

DAG 5 - E2E deadline=100.00 ms

n0,0

n0,3

n0,1

n0,2

n0,4

n0,5

n0,6

n0,7

n0,8

n0,9

n0,10 n0,11

n0,12

n1,0

n1,3

n1,1

n1,2

n1,4

n2,0

n2,3

n2,1

n2,2

n2,4

n2,5

n2,6

n2,7
n2,8

n2,9
n2,10 n2,11

n2,12

n3,0

n3,1

n4,0

n4,3

n4,1

n4,2

n4,4

n4,5

n4,6

n4,9

n4,10

n4,11

n4,15

n4,19

n4,20

n4,23

n4,27

n4,28
n4,33

n4,36

n4,37

n4,42

n4,7n4,8

n4,13

n4,16 n4,17

n4,14

n4,12

n4,18

n4,21

n4,22

n4,25

n4,26

n4,24

n4,29

n4,30

n4,32

n4,34

n4,31

n4,35 n4,38

n4,39

n4,40

n4,41

n5,0

n5,3

n5,1

n5,2

n5,4

n5,5

n5,6

n5,7
n5,8

n5,9
n5,10n5,11

n5,12

Figure 20: Transformed ODAS model as reduced by the optimizer via aggregation of small runnables (and still
equivalent to the full model in Figure 19), before starting the actual MIQCP-based optimization.

The ODAS use case is divided into six Amalthea tasks: RADAR Preprocessing, LiDAR Preprocessing, OffLoaded
CAMERA Preprocessing, Sensor Fusion, UKFs and CCM. The tasks do not contain many exploitable paralleliza-
tion, but they do use replication. Figure 22a shows the TDG of the LiDAR Preprocessing task. In this example
we can see that the parallelizable code is in fact the replicas of specific runnables, and a "syncronization" node
exist between replications. Tasks RADAR Preprocessing and Sensor Fusion contain a TDG with a very similar
structure, while the TDGs of CCM and Offloaded CAMERA Preprocessing are in fact very small (between two
to four runnables in these tasks). The only task taking advantage of parallelism is the UKFs task, which con-
tains 243 nodes, and the main TDG structure of this task is represented in Figure 22b. This task uses 60 UKFs,
running in parallel, with each UKF having three replicas.
This description is important to understand the results of the mapping exploration. We executed the multi-
criteria optimization flow using four representative mapping algorithms:

• MTET-MET:Minimum Total Execution Time allocation heuristic with aMinimum Execution Time dispach-
ing heuristic;

• MTET-FIFO: Minimum Total Execution Time allocation heuristic with a First-In-First-Out queue;

29

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Power=3.512267W

CPU (island 0) [freq:1190.40Hz]

PU 0 [U:0.89]PU 1 [U:0.90]

PU 2 [U:0.81]

PU 3 [U:0.95]

PU 4 [U:0.76]

PU 5 [U:0.71]
PU 6 [U:0.87]

PU 7 [U:0.91]

GPU (island 1) [freq:624.75Hz]

PU 0 [U:0.00]

n0,2 C:1065.52us
 D:15508.33us [bw:0.07]

n0,3 C:168.62us
 D:1704.76us [bw:0.10]

n0,10 C:2363.46us
 D:27068.92us [bw:0.09]

n0,11 C:134.50us
 D:2802.53us [bw:0.05]

n0,12 C:-0.00us
 D:14.52us [bw:-0.00]

n0,1 C:4250.11us
 D:20685.93us [bw:0.21]

n0,0 C:3943.31us
 D:25904.04us [bw:0.15]

n1,0 C:6277.14us
 D:64856.04us [bw:0.10]

n1,3 C:177.03us
 D:4287.89us [bw:0.04]

n1,4 C:-0.00us
 D:30.60us [bw:-0.00]

n1,2 C:2868.26us
 D:58271.21us [bw:0.05]

n1,1 C:7325.99us
 D:55434.92us [bw:0.13]

n2,2 C:303.25us
 D:5844.42us [bw:0.05]

n2,3 C:377.39us
 D:8261.79us [bw:0.05]

n2,5 C:4816.37us
 D:30632.42us [bw:0.16]

n2,7 C:90.95us
 D:4875.21us [bw:0.02]

n2,10 C:906.28us
 D:11743.16us [bw:0.08]

n2,11 C:104.61us
 D:3335.00us [bw:0.03]

n4,8 C:447.41us
 D:8491.26us [bw:0.05]

n4,42 C:-0.00us
 D:5.32us [bw:-0.00]

n4,22 C:1706.38us
 D:11310.54us [bw:0.15]

n4,28 C:22180.76us
 D:64908.16us [bw:0.34]

n4,29 C:97.89us
 D:4445.69us [bw:0.02]

n4,30 C:653.66us
 D:9448.78us [bw:0.07]

n4,31 C:105.09us
 D:7361.18us [bw:0.01]

n4,32 C:396.85us
 D:12445.10us [bw:0.03]

n4,34 C:97.25us
 D:6026.10us [bw:0.02]

n5,12 C:-0.00us
 D:10.70us [bw:-0.00]

n5,1 C:12790.10us
 D:38422.60us [bw:0.33]

n5,0 C:5761.60us
 D:27028.56us [bw:0.21]

n5,2 C:5589.62us
 D:25754.42us [bw:0.22]

n2,4 C:2076.57us
 D:19600.46us [bw:0.11] n2,6 C:2151.84us

 D:25641.22us [bw:0.08]

n4,9 C:3753.57us
 D:54356.75us [bw:0.07]

n4,12 C:85.44us
 D:10612.98us [bw:0.01]

n4,16 C:769.66us
 D:10165.11us [bw:0.08]

n4,23 C:17278.56us
 D:69036.80us [bw:0.25]

n4,25 C:259.56us
 D:5338.52us [bw:0.05]

n4,24 C:295.92us
 D:6064.03us [bw:0.05]

n4,37 C:9945.11us
 D:63200.26us [bw:0.16]

n4,40 C:130.15us
 D:5640.69us [bw:0.02]

n4,38 C:522.68us
 D:11515.70us [bw:0.05]

n4,39 C:121.32us
 D:3324.43us [bw:0.04]

n5,3 C:465.69us
 D:11088.75us [bw:0.04]

n5,5 C:1194.29us
 D:7335.75us [bw:0.16]

n5,7 C:86.79us
 D:879.43us [bw:0.10]

n0,4 C:1077.74us
 D:10821.31us [bw:0.10]

n0,7 C:96.58us
 D:2039.38us [bw:0.05]

n0,9 C:2089.02us
 D:36133.41us [bw:0.06]

n0,8 C:1865.71us
 D:19445.88us [bw:0.10]

n2,9 C:462.68us
 D:13411.36us [bw:0.03]

n4,0 C:1228.41us
 D:3862.33us [bw:0.32]

n4,3 C:312.05us
 D:1014.75us [bw:0.31]

n4,10 C:7494.83us
 D:40677.42us [bw:0.18]

n4,18 C:1019.66us
 D:16823.24us [bw:0.06]

n4,15 C:11941.68us
 D:49158.95us [bw:0.24]

n4,17 C:867.27us
 D:8361.31us [bw:0.10]

n4,21 C:84.42us
 D:4281.84us [bw:0.02]

n5,8 C:4867.22us
 D:27196.33us [bw:0.18]

n5,11 C:606.68us
 D:2883.14us [bw:0.21]

n2,8 C:457.30us
 D:22533.01us [bw:0.02]

n4,6 C:27134.54us
 D:81344.72us [bw:0.33]

n4,14 C:647.29us
 D:5820.20us [bw:0.11]

n4,13 C:1805.74us
 D:6923.44us [bw:0.26]

n4,7 C:168.90us
 D:3149.13us [bw:0.05]

n4,20 C:39041.50us
 D:80719.56us [bw:0.48]

n4,26 C:184.52us
 D:2767.05us [bw:0.07]

n5,4 C:1434.94us
 D:7787.42us [bw:0.18]

n5,6 C:1418.56us
 D:10425.27us [bw:0.14]

n0,5 C:1567.85us
 D:9763.75us [bw:0.16]

n0,6 C:964.30us
 D:9729.76us [bw:0.10]

n2,0 C:235.05us
 D:7613.87us [bw:0.03]

n3,0 C:532.92us
 D:17361.87us [bw:0.03]

n3,1 C:1159.35us
 D:42042.85us [bw:0.03]

n4,11 C:13630.36us
 D:48233.40us [bw:0.28]

n5,9 C:3293.26us
 D:18522.40us [bw:0.18]

n5,10 C:6556.99us
 D:30927.38us [bw:0.21]

n2,1 C:1255.70us
 D:11419.42us [bw:0.11]

n4,19 C:7534.54us
 D:38574.89us [bw:0.20]

n4,36 C:2886.91us
 D:30139.57us [bw:0.10]

n4,5 C:28143.23us
 D:59828.31us [bw:0.47]

n4,4 C:12993.44us
 D:66375.47us [bw:0.20]

n4,27 C:7559.57us
 D:49904.71us [bw:0.15]

n4,33 C:11890.99us
 D:56784.38us [bw:0.21]

n4,1 C:528.54us
 D:2722.24us [bw:0.19]

n2,12 C:-0.00us
 D:17.62us [bw:-0.00]

n4,2 C:1225.30us
 D:5109.14us [bw:0.24]

n4,35 C:170.22us
 D:3805.43us [bw:0.04]

n4,41 C:-0.00us
 D:5.33us [bw:-0.00]

Figure 21: Optimal placement found by the MIQCP-based optimizer for the transformed reduced-size ODAS
model in Figure 20.

• BFS-FIFO: traditional BFS algorithm of LLVM’s runtime OpenMP;

• SEQR: sequential algorithm, only replicas in different threads.

The two latter algorithms are used for comparison purposes, one to compare with the original dynamic ap-
proach (BFS) and the other to compare with a sequential execution, where only replicas are in fact executed
in different threads.

The exploration of the mapping algorithms only had impact in the UKFs Amalthea task, while the others did
not take advantage of the heuristic-based mapping algorithms. This is mainly due to the other tasks having
almost no parallel executions. Figure 23 shows the results for the UKFs task and for the LiDAR Processing
task, where the latter is representative to the behavior of the other tasks. Observe that the LiDAR Processing
shows no potential parallelism, and this can be seen when comparing anymapping algorithm to the sequential

30

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Task Deadline [ms] Response Time [ms]
Average Maximum

0 92 9.738 40.714
1 100 7.278 48.500
2 100 8.338 35.165
3 100 1.932 8.493
4 100 63.452 79.271
5 100 21.529 48.970

Table 6: Average and maximum response times per task in the ODAS use-case when executed on the NVIDIA Jetson AGX
platform.

(a) LiDAR Preprocessing, each runnable with tree replicas

(b) UKFs (using 60 UKFs, each one with three replicas)

Figure 22: Two representative TDGs of Amalthea tasks modelled in ODAS use case.

representation of the code (where only replicas are executed in different threads). Henceforth, the mapping
optimization is focused essentially in the UKFs task, which shows variability in Figure 23 between the algo-
rithms.

The multi-criteria optimization was done with the exploration of mapping algorithms and with the exploration
of different system configurations. In this case, the exploration was done with different CPU frequencies, more
specifically: 729.60MHz, 1.190GHz and 2.265GHz. Figure 24 provides the results of the mapping exploration
for the different frequencies, over the different Amalthea tasks, where the WCET was used for the mapping
exploration. Considering that we are actually specifying a static task-to-thread mapping, we will have more
guarantees on the predictable execution time. The results of the Amalthea Tasks are stack to show the com-
plete end-to-end execution time/energy consumption accumulated from all the tasks. Figure 24a shows the
results for execution time. Here we can see improvements on performance when increasing the frequencies.
From 729.60MHz to 1.190GHz we have an increase of performance of 2.19x, and increasing to 2.265GHz we
further improve with more 3.02x (compared to 1.190GHz).

31

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

Figure 23: Mapping exploration results for two representatives tasks: "UKFs" and "LiDAR Preprocessing",
when executing in a CPU frequency of 1190.40MHz, with eight OpenMP threads.

In Figure 24b we see improvements regarding the use of a CPU frequency at 1.190GHz, but we start expending
more energy when considering higher frequencies. The lowest frequency shows that, despite being expected
to consume less energy, the tasks to be performed takes longer to execute, expendingmore energy to complete
the tasks. When increasing the frequency from 729.60MHz to 1.190GHz we improve energy consumption by
2.12x, but when we increase to 2.265GHz we have a performance loss of 0.73x.

(a) Timing Results (b) Energy Results

Figure 24: Timing and energy performance results from the Multi-criteria optimization flow, for different CPU
frequencies, using eight OpenMP threads.

Since the optimizer selects one configuration for each optimization criterion, for this use case the optimizer
selected specific static task-to-threads mappings (one for each task) and the following system configurations:

• For time predictability: a CPU frequency of 2.265GHz;
• For lower energy consumption: a CPU frequency of 1.190GHz.

32

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

4 Conclusions
This document presented the updated analysis and tools for multi-criteria optimization for the AMPERE frame-
work, together with their evaluation on the project use cases.
The document described the evolutions of the mechanisms identified in Deliverable D3.3 [4] for analysis of
energy-efficiency, predictable execution, and software resiliency techniques, as well as the final framework
and approach for the multi-criteria optimization described in Deliverable D2.4 [3], and integrated into the
AMPERE ecosystem within WP6 [2].
The document then presents the evaluation of the multi-criteria optimization framework in the use cases of
WP1 [5].

33

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

5 Acronyms and Abbreviations
API Application Programming Interface

CCM Collision Checker Module
CMOS Complementary Metal-Oxide Semiconductor
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CTA Compute Thread Array

CUPTI CUDA Profiling Tools Interface
D Deliverable

DAG Direct Acyclic Graph
DPM Dynamic Power Management
DPR Dynamic Partial Reconfiguration
DR Dynamic Regulator

DSML Domain Specific Modeling Language
DVFS Dynamic Voltage and Frequency Scaling
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
HDL Hardware Description Language
HPC High-Performance Computing
I2C Inter Integrated Circuit
ISA Instruction Set Architecture
LLC Last Level Cache
LLS Linear Least Squares
LUT Lookup Table

MAPE Mean Absolute Percentage Error
MDE Model-Driven Engineering
MET Minimum Execution Time
MILP Mixed Integer Linear Programming
MNTP Minimum Number of Task Parts
MRIT Most Recent Idle Time
MRT Maximum Response Time
MS Milestone

MTET Minimum Total Execution Time
MTRT Maximum Total Response Time
NNLS Non-Negative Least Squares

NT Next Thread
ODAS Obstacle Detection Avoidance System

OS Operating System
PCC Pearson Correlation Coefficient
PMC Performance Monitoring Counter

34

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

PMU Performance Monitoring Unit
PPM Parallel Programming Model
RR Reconfigurable Region
SFI Software Fault Injection

SIMD Single Instruction Multiple Data
SLG Synthetic Load Generator
SM Streaming Multiprocessor
SoC System-on-a-Chip

T Task
TDG Task Dependency Graph

WCET Worst Case Execution Time
WP Work Package

35

D3.4 - Evaluation of multi-criteria optimizations
Version 1.0

6 References
[1] AMPERE, “Grant Agreement,” 2018.
[2] ——, “Deliverable D6.4, Final Release of the Ampere Ecosystem,” June 2023.
[3] ——, “Deliverable D2.4, Multi-criteria optimization model transformation,” September 2022.
[4] ——, “Deliverable D3.3, Energy optimisation framework, predictable execution models and analysis, and

Software resilient techniques,” September 2022.
[5] ——, “Deliverable D1.1, System models requirement and use case selection,” 2020.
[6] ——, “Deliverable D2.3, Programming model extensions and the multi-criteria performance-aware com-

ponent,” September 2022.
[7] ——, “Deliverable D4.3, Integrated run-time energy support, and predictability, segregation and resilience

mechanisms,” September 2021.
[8] S. Mazzola, T. Benz, B. Forsberg, and L. Benini, “A data-driven approach to lightweight dvfs-aware counter-

based power modeling for heterogeneous platforms,” in International Conference on Embedded Com-
puter Systems. Springer, 2022, pp. 346–361.

[9] AMPERE, “Deliverable D3.1, Multi-criteria optimization requirements,” September 2020.
[10] ——, “Deliverable D3.2, Single-criterion energy optimisation framework, predictable execution models

and software resilient techniques,” July 2021.
[11] NVIDIA Corporation, “Jetson AGX Xavier developer kit,” 2018. [Online]. Available: https://developer.

nvidia.com/embedded/jetson-agx-xavier-developer-kit
[12] AMPERE, “Deliverable D5.1, Reference parallel heterogeneous hardware selection,” 2020.
[13] M. S. Gharajeh, S. Royuela, L. M. Pinho, T. Carvalho, and E. Quiñones, “Heuristic-based task-to-thread

mapping in multi-core processors,” in 2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2022, pp. 1–4.

[14] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & transformation,”
in Proceedings of the International symposium on code generation and optimization, 2004.

[15] T. Carvalho, L. M. Pinho, M. Samadi, S. Royuela, A. Munera, and E. Quiñones, “Framework for the analysis
and configuration of real-time openmp applications,” in 2023 IEEE International Conference on Industrial
Informatics. IEEE, 2023.

[16] A.Melani, M. Serrano, M. Bertogna, I. Cerutti, E. Quinones, and G. Buttazzo, “A static scheduling approach
to enable safety-critical openmp applications,” in Proceedings of the 22nd Asia and South Pacific Design
Automation Conference, 2017.

[17] A. Marongiu, G. Tagliavini, and E. Quiñones, “Openmp runtime,” in High Performance Embedded Comput-
ing. River Publishers, 2022, pp. 145–172.

[18] B. S. Center, “Bsc extended llvm 16.0,” url=http://gitlab.bsc.es/ampere-sw/wp2/llvm, 2023.
[19] T. Cucinotta, A. Amory, G. Ara, F. Paladino, and M. D. Natale, “Multi-criteria optimization of real-time

DAGs on heterogeneous platforms under p-EDF,” ACM Transactions on Embedded Computing Systems,
Apr. 2023. [Online]. Available: https://doi.org/10.1145%2F3592609

[20] Gurobi Optimization, LLC, “Gurobi.” [Online]. Available: https://www.gurobi.com/
[21] G. Ara, T. Cucinotta, and A. Mascitti, “Simulating Execution Time and Power Consumption of Real-Time

Tasks on Embedded Platforms,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, ser. SAC ’22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 491–500.
[Online]. Available: https://doi.org/10.1145/3477314.3507030

[22] AMPERE, “Deliverable D4.4, D4.4 Evaluation of run-times,” June 2023.

36

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://doi.org/10.1145%2F3592609
https://www.gurobi.com/
https://doi.org/10.1145/3477314.3507030

	1 Introduction
	2 AMPERE Non-functional Optimizations
	2.1 Updates on Resilient Software Techniques
	2.1.1 Evaluation of the replication mechanism

	2.2 Updates on Energy Modelling, Estimation and Optimization
	2.2.1 API for Power & Energy Estimation
	2.2.2 Update to the CPU Energy Model

	2.3 Updates on Predictable Execution Models
	2.3.1 Evaluation of the Mapping Algorithms

	3 Multi-criteria Optimization
	3.1 Updates on Multi-Criteria Configuration Flow
	3.1.1 Profiling phase
	3.1.2 Optimization Phase

	3.2 Updates on Multi-criteria Optimization
	3.2.1 Validating the optimizer
	3.2.2 Optimizer extension to support OpenMP
	3.2.3 Extension to support task chains

	3.3 Evaluation on PCC Use Case
	3.3.1 Minimum power optimization
	3.3.2 Maximum robustness optimization

	3.4 Evaluation on ODAS Use Case
	3.5 Evaluation on ODAS Use Case Using Mapping Heuristics

	4 Conclusions
	5 Acronyms and Abbreviations
	6 References

