Towards a RISC-V Open Platform for Next-generation Automotive ECUs

Type of publication
Publication in Conference Proceedings/Workshop
Authors

Cuomo, Luca and Scordino, Claudio and Ottaviano, Alessandro and Wistoff, Nils and Balas, Robert and Benini, Luca and Guidieri, Errico and Savino, Ida Maria

Conference / Journal
2023 12th Mediterranean Conference on Embedded Computing (MECO)
Publisher
IEEE
Year of publication
26 June 2023
Place of publication
Budva, Montenegro
Citation

L. Cuomo et al., "Towards a RISC-V Open Platform for Next-generation Automotive ECUs," 2023 12th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 2023, pp. 1-8, doi: 10.1109/MECO58584.2023.10154913.

Abstract

The complexity of automotive systems is increasing quickly due to the integration of novel functionalities such as assisted or autonomous driving. However, increasing complexity poses considerable challenges to the automotive supply chain since the continuous addition of new hardware and network cabling is not considered tenable. The availability of modern heterogeneous multi-processor chips represents a unique opportunity to reduce vehicle costs by integrating multiple functionalities into fewer Electronic Control Units (ECUs). In addition, the recent improvements in open-hardware technology allow to further reduce costs by avoiding lock-in solutions. This paper presents a mixed-criticality multi-OS architecture for automotive ECUs based on open hardware and open-source technologies. Safety-critical functionalities are executed by an AUTOSAR OS running on a RISC-V processor, while the Linux OS executes more advanced functionalities on a multi-core ARM CPU. Besides presenting the implemented stack and the communication infrastructure, this paper provides a quantitative gap analysis between an HW/SW optimized version of the RISCV processor and a COTS Arm Cortex-R in terms of real-time features, confirming that RISC-V is a valuable candidate for running AUTOSAR Classic stacks of next-generation automotive MCUs.

DOI
10.1109/MECO58584.2023.10154913